
Successful SAF Process Digitalization

Digitization of Sustainable Aviation Fuel (SAF) processes is a rapidly evolving field aimed at making SAF production, distribution, and certification more efficient, transparent, and scalable.

At Inprocess, we focus on process improvement & de-risking of SAF Processes, e.g. by applying Digital Process Twins simulating SAF production processes to de-risk greenfield project, e.g. through virtual commissioning – as well as monitoring the real-time performance of SAF processes and thus enabling reduced energy consumption and process improvements.

Inprocess Digitalization Applications for SAF Greenfield Projects

• Engineering Design Support

- Equipment Sizing
 - Reactor sizing and control settings
 - Anti-surge protection design for compression systems

Validation of Control Philosophy and Operating Procedures

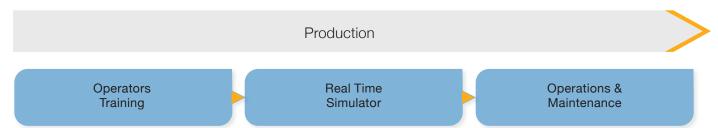
- Defining and testing of operating procedures for Start-up, Shutdown, load changes, products transition
- Cause & Effect Matrix Verification
- Set point values, Alarm rationalization, pre-tuning of controllers

Process Trainer (Emulated OTS)

 With the Dynamic Model and the validated Control Philosophy it is possible to train operators on the processes independently of the DCS vendor delivery schedule.

DCS & SIS Virtual Commissioning

- Check out of the Control and Safety logics
- Controlers De-bugging


Operators Training with OTS

- Direct-Connect Operator Training Simulator
- Train Operators on SAF control and safety

Support during facilities Start-up

Support to commissioning activities

Inprocess Digitalization Applications for SAF Brownfield Projects

Operators Training with OTS

- Refresher trainings
- Train new hires
- Trainings after major revamps
- Simultaneous Training of control room and field operators

• Real-Time Simulator: Online Digital Twin

- · What-if analyses
- Equipment monitoring
- Look-ahead studies
- · Inferential measurements

• Operations & Maintenance

- Flare system revalidation
- De-bottlenecking studies
- Emissions reduction
- Controllers fine-tuning
- Post-incident analysis for flaring episodes
- Development of procedures for new operating conditions – e.g. modes transitions (depending on process pathway)

Digitalization Benefits of Inprocess' dynamic process simulation application

With Inprocess' simulation-based digitalization applications during Engineering, Commissioning, and Operations, our customers can improve and fasten decision-making processes across the whole SAF Process lifecycle.

• **Development Phase**

- Ensure safe-by-design processes through realistic engineering studies
- Reduce capital costs (CAPEX) by accurate design of the equipment
- Detect process inefficiencies before construction
- Minimize commissioning time by having virtually checked out the DCS & SIS
- Train Operators on time, before start-up

Production Phase

- Reach Operational Efficiency utilizing optimized operating procedures
- Infer process values by simulation for non-instrumented variables
- Detect deviations of equipment performance
- Decision support with real time information obtained from process simulation

Additional benefits by combining digitalization applications to Multi-Purpose Dynamic Simulator (MPDS)

A Multi-purpose Dynamic Simulator (MPDS) aims to optimize the utilization and the benefits of dynamic process models across all the applications described above.

It serves as a valuable tool from initial stages in design and development of Greenfield projects up to operational and maintenance stages of both Greenfield and Brownfield projects.

Key benefits of MPDS include de-risking projects, virtual DCS & SIS commissioning, availability of offline and online process Digital Twins (Real Time Simulators), among many others.

Sustainable Aviation Fuel

Feedstocks

Waste Oils

CO₂ + Hydrogen

Waste Carbon

Production Processes

Blending

UP TO 30% LOWER GREENHOUSE GAS EMISIONS*

*Relative to conventional jet ol, depending on feedstock and pro

SIGNIFICANT LOWER LIFE CYCLE CARBON FOOTPRINT

REDUCED PARTICULATE AND SULFUR EMISSIONS

Usage

COMMERCIAL AIRCRAFT