

Refinery Pre-heat Train Monitoring and Cleaning Tool

Stephen Wagner, Hiren Shethna (Saudi Aramco) Manel Serra Rey, María Jesús Guerra (Inprocess)

OPTIMIZE[™] 2013

Agenda

Saudi Aramco

Drivers for application and overall design.

Overview of design.

Challenges

2

- National oil company of Saudi Arabia.
- Almost 56,000 employees.
- One of the World's largest oil companies.
- A fully-integrated oil and gas company with affiliates, joint ventures and subsidiaries around the world.
- Owns and operates one of the largest oil tanker fleets.

Crude Unit Overview

Operation Objectives

- Crude preheat exchanger fouling
 - Increased heater fuel load
 - Increased pressure drop
- Operating costs depend on fuel source

Operation Objectives

- Monitor heat exchanger performance.
- Identify which exchangers to clean and when.
- Demonstrate that overall cost of cleaning recovered

Modeling Objectives

- Utilize existing simulation technologies
- Evaluate technologies and methodology
 - Detailed exchanger models
 - Hysys EO
- Cautious approach to automation until benefits well understood.

Establish Operating Conditions

- Eliminate individual energy imbalance:
 - Average data.
 - Reconcile data.
 - Improve measurements.

Estimate Exchanger Performance

- Individual exchangers (U values, Fouling factors).
- Preheat exchanger network (normalized furnace inlet temperature).

Predict Future Performance

- Different operating scenarios (bypass, clean, etc.).
- Consider key time effects on unit performance.

- Heat and Material Balance reconciliation for selected Heat Exchangers.
- Using HYSYS EO
 - Easy interaction with performance, prediction models
 - Faster performance <1 min avg. solving time

1. Establish Operating Conditions

EO: Available/missing instrumentation

1. Establish Operating Conditions

Reconciliation Improves results and helps identify trends

Smoothes the trends.

Non

Data

reconciled

- Regression of fouling trends easier.

Helps automation of the tasks.

Reconciled
Dara with EO
Mode

2. Estimate Exchanger Performance

- U (U = Q / (A * LMTD * Ft)
 - FAST: Direct calculation from measurable variables.
 - INDIRECT: Varies with flows and properties.
- Fouling factor r_o + r_i (d_o/d_i)

$$(1/U = 1/h_o + r_o + e/K(d_o/d_w) + (1/h_i + r_i) d_o/d_i)$$

- SLOW: Traditionally iterative.
- DIRECT: Only dependent on amount of fouling.
- Requires individual coefficient correlations.

2. Estimate Exchanger Performance

New EDR utility in HYSYS

FAST: Directly calculates fouling factor - no iterations.

- ACCURATE: dependent on fouling, not on process

variables.

2. Estimate Exchanger Performance

- Using EDR to estimate fouling factor KPI is realizable objective.
- Beneficial for historical fouling trends analysis.
 - Two years of weekly datasets (7 exchangers / dataset).
 - Trial and error
 - 30 to 60 seconds per heat exchanger per dataset.
 - 6 12 hours for all datasets
 - EDR
 - 10 20 minutes for all datasets.

- Fractionators in pumparound rating mode.
- EDR to calculate the performance of heat exchangers.
- Include effect of online time on unit performance.
 - Fouling factor trends extrapolated as desired.
- Decision and adjust variables :

Decision	Adjust
Fractionator heat balance	Heat exchanger cleaning
Furnace preheat temperature	Bypasses
Furnace fuel consumption	Pumparound flows

3. Predict Future Performance

- Two (2) simulation-based applications.
 - Performance Historical & Current
 - Predictive
- Three (3) simulation blocks.

Two Model User Interface(s)

1 : Performance Monitoring

- Data validation & reconciliation.
- Calculation of fouling factors.
- Fouling trend calculation from reconciled historical plant data.
- Current fouling from reconciled plant data.

Two Model User Interface(s)

- 2 : Prediction/Scenarios
 - forecasting operation to assess changes.
 - using fouling from historical analysis.

- Variable vs. constant Fluid properties
 - For changing crude slate it may be necessary to run distillation columns.

PHYSICAL COMPARISON TABLE Selection criteria: Crude API most differen		ifferent		
	TOP PA			
DATE	Std Id Mass Dens	Mass Heat Capacity	Thermal Cond	Viscosity @T
	Kg/m3	Kj/kgC	W/mK	сР
	735.701	2.562	0.098	0.194
	733.848	2.557	0.098	0.195
	720.133	2.533	0.098	0.192
	736.163	2.565	0.098	0.194
	735.702	2.560	0.098	0.195
	734.591	2.556	0.098	0.195

Challenges

- Pressure drop (dP) as a fouling indicator.
 - Fouling factor calculations seem to be more stable and reliable as a source for identifying fouling than a difference between measured and model (theoretical) pressure drop.

Challenges

- Simple UA/A as indicator.
 - Again, fouling factor calculated results are more stable and reliable in predicting exchanger fouling.

- Model scope in reconciliation.
 - A decision was made to use a reduced scope model, fixing some relationships between fluids instead of modeling the actual dependence.
 - The decision was made based on the model of a splitter with a pre-heater reusing some heat from the bottoms stream.

Conclusion

- Using EDR to estimate fouling factor KPI is a realizable objective.
- Data reconciliation benefits limited by missing process data.
- Improved Hysys EO desired
 - EDR not linked to EO exchangers: extra SM model required
 - Direct EO automation not available: ASW & EO synchronization issues
- Work in progress
 - Main benefit expected from fouling trends

Thank you