

Improve process stability by optimal tuning of PID control loops using Dynamic Simulation

Jairo Segovia Reyes (Repsol) Hanneliese Freites Kondratowitsch (Inprocess) Paula Ventura, JoseMaría Ferrer (Inprocess)

© REPSOL NORGE A.S | YME ASSET | APRIL 2024

Agenda

Repsol YME overview

Slugging: the challenges from the beginning

Scope of work

The role of the tuning

Plant Result

Takeaways and Conclusion

© REPSOL NORGE A.S | YME ASSET | APRIL 2024

YME

Development concept: A mix of new and existing facilities

	a		 a Subsea offloading system b Storage tank and caisson c Subsea Templates in beta & gamma wells. d Drilling rig with process unit. e Wellhead module at top of Caisson. f Caisson Permanent Support. g Gamma Wells (lifting strategy: 4 gas lift + 2 ESP) h Beta wells – subsea template and wells (Gas lift)
			b c g
SERVICE	UNITS	DESIGN RATE	
Produced Oil	m3/d	9000	
Produced Water Treatment	m3/d	12500	
HP Gas Compression and Injection	Sm3/d	900000	C
HP Gas Dehydration	Sm3/d	1100000	
Gas Lift	Sm3/d	700000	(h)
Produced Water Injection	m3/d	13000	

PRODUCTION RECORD (24/11/2023): Dry Oil ≈ 5300 m3/d

The challenges from the source

What is Slugging?

It is an erratic flow of a three-phase mixture caused by the alternating presence of liquid slugs and gas pockets

Mature Assets

They have depletion of oil production and increase of water cuts through time, promoting the slugging behavior

Plant Instability

It has been a real challenge from the startup of the facilities to avoid production deferment having choked wells, and in some cases with severe slugging resulting in partial and total Shutdowns.

A HYSYS dynamic model was created to study the loop tuning parameters

Orchestrating Offshore Symphony

What has in common a PID Controller with a musical instrument?

Need to be **tuned** for desired pitch and sound quality

Adjustments are made based on sound **feedback** to achieve the desired musical expression.

It needs a blending **science** of sound production with the artistry of musical expression

PID controllers are based on **feedback** control Tuning a PID controller involves both **engineering principles** and a nuanced understanding of the

Need to be **tuned** for proper control

system's behavior

Bad Tuning

Orchestrating Offshore Symphony

If all instruments are well-tuned, will a successful symphony be achieved?

Just as a conductor ensures harmony in a symphony of multiple instruments, the same happens with interactive control loops in a plant.

Orchestrating Offshore Symphony

Multiple Instruments in a Wavy Storm

Just imagine that this symphony needs to be performed in this storm. Would the performance be the same?

How will the tuning behave to these perturbations?

Is it possible to reduce perturbations?

Scope of work

Model

Realistic Model

Tuning Methodology Slugging Pattern Simulation

Tuning Methodology Slugging Pattern Simulation

PID Controllers + Logical Operations

	A	8	ç	D	1
1		Std Vol Flow Min (Std Vol Flow Max		
2	GAS	3000	8000		
3	OL	20.00	00.08		
4	WATER	10.09	60.00		
5					
5		Slug duration (min)	Period (min)		Ramp Duration (m
7	Gas Shug	12.00	18.00		2.000
в	Liquid Slug	6.000			
9					
10	ACTIVATE (0/1)	1.000			

Result

Solid	<u> </u>	FEED_GAS_FIC-100 - SP
Dotted	×.	FEED_GAS_FIC-100 - PV
Dashed	×.	FEED_GAS_FIC-100 - OP
Solid	×.	FEED_OIL_FIC-100 - SP
Dotted	×.	FEED_OIL_FIC-100 - PV
Dashed	×	FEED_OIL_FIC-100 - OP

FEED_Water_FIC-100 - OP		Dashed
in	oroc	ess

1

Dotted

FEED_Water_FIC-100 - PV

Tuning Methodology

3) Model the Feed

Using the Slugging patterns to simulate the same plant behavior

1) Find Interactive Loops

2) Review Historical Data

The saturation of PIC07 affects the level Oil Chamber has more alarms than water chamber

4) Set Control Strategies

Trade off: oil vs water perturbations. More aggressive water controller will stabilize oil flow

Chamber	Residence Time (Min)		
Water	23		
Oil	4		

5) Try different Tuning Parameters

Tuning Methodology

6) Analyze HYSYS Results

Effect of the change in **LIC-01** tuning parameters in the loops **PIC-07** and **LIC-02**

Changing the tunning in **LIC-01** will have a significant impact in the performance of the other loops!

7) Choose the right tuning

Plant Results HP Separator: Water Level

Objective: Reducing fluctuations in Water level to reduce fluctuations in Oil Level

Plant Results

Gas System

70,00 72,00 74,00 76,

58.00 60.00 62.00

220.00

200,00

140

00.00 120.00

8

5

(%)

Z FIC-03

15 00:00

15 06:00

15 12:00

15 18:00

15 00:00

Objective: Reducing fluctuations in the gas system by changing set points, reducing loop interaction.

Initial

Plant Results

LP Separator: Oil Level and Oil Pressure

O Objective: Reducing fluctuations in Oil Level and Oil Pressure in LP Sep \checkmark

Plant Results KPIs

Product Quality Lab Analysis

REPJOL

• Trips

Since the beginning of the project there has been none trips related to the process

Conclusions

235

Slugging is one of the major issues to deal in the operation of mature assets

Initial PID tuning parameters are no longer valid with lower production rates or slugging

Traditional PID tuning rules are not valid for interactive controllers or with slugging patterns

Aspen HYSYS Dynamics[™] can reproduce the whole asset behavior with the required detail

Massive plant data analysis is strictly required for process understanding and model calibration

Value: a more stable plant (up to 70% reduction in oscillation) avoids trips, reduces energy consumption,

and allows production rate increases.

Your Free Take Aways

HYSYS Dynamic example simulating slugging

© REPSOL NORGE A.S | YME ASSET | APRIL 2024