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T oday’s society is growing and learning in a new era, the 
age of computing. At the same time, year after year, 
new generations of central processing units (CPUs) and 
graphics processing units (GPUs) are coming onto the 

market, all linked to different machine learning (ML) algorithms 
that are gradually being integrated into society. 

Most of the algorithms in use today were created decades 
ago. They are becoming increasingly standardised and available 
to everyone. This is due to their open-source characterisation 
and their ease of use thanks to the low-code philosophy. Even 
so, the current difficulty is not in the complexity of the 
mathematical formulation, but rather in how to integrate the 
mathematics into the solution.

At the same time, the hydrocarbon industry is not lagging 
behind and more projects are emerging which utilise this type of 
technology. The industry is seeing that the technology can be 
profitable and applied quickly. This article discusses the digital 
twin (DT) applied in hydrocarbon processes. It will explain what 
these types of applications are and where they come from, and 
will explore different types of this technology.

What is a DT and where do they come 
from?
During production, the aim has always been to make inferences 
on process variables. This allows access to more information with 
which to make decisions. A simple economic balance of outputs 
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minus inputs is already an inference of profit. However, this 
article will discuss the process and control part. Let us start with 
a very simple example: water boils at 100°C at atmospheric 
pressure. What happens if water is boiling at 110°C using a 
pressure cooker? With a single thermometer, we can know the 
pressure – in this case it would be 1.4 atm. A very common 
inferential in the hydrocarbon industry is the composition in 
distillation columns. In this case it gets more complicated. Let us 
assume a binary mixture, e.g. propane and propylene. What we 
know is, each tray of the column is boiling, so if we measure 
pressure and temperature on that tray, we can find out the 
composition of this mixture. This is because there is only one 
mixture boiling at that pressure and temperature.

While this sounds ideal, real plants are not that simple. There 
are always more components, the instrumentation does not 
work as it should, and there can be moments when operators 
are not in balance. In these situations, one must look for more 

complex solutions. There are many options, and they all have 
their pros and cons. There are three main solutions:

	n The first solution is to correlate directly with plant data. 
This has its merits, as it directly uses historical data from the 
actual plant. However, only using data is not always a good 
thing. This is because one can only correlate something that 
there is already historical data of. Therefore, the predictions 
will get increasingly inaccurate as they move away from the 
correlated data zone. To complete these regressions, 
conventional multivariate calculations can be used, such as 
the typical polynomial fit. Alternatively, ML model training 
can be taken. 

n	 As a second solution, commercial simulators can be used. 
These already include thermodynamic packages and most 
of the objects to be simulated. However, they will require a 
model to be built for the simulation. This model can be 
used to generate all the states in the plant (e.g. high, 
medium, low feed, high pressure, low pressure). This includes 

all the states that the 
process can have 
depending on the 
independent 
variables. With these 
results, correlations 
can be applied and 
the inference that the 
operator is looking 
for can be calculated. 
This will give better 
solutions than 
correlations which 
use only the historical 
data of the plant, 
since there will be 
more samples outside 
of the normal 
operation parameters.

	n   The third (and most 
accurate) solution is 
to connect the 
model to the 
historical pipeline. 
This model can be a 
dynamic or steady 
state, depending on 
whether the operator 
is interested in 
transitions or not. 
This consists of 
feeding the model 
with all the inputs. 
These inputs are 
mainly process 
variables (PV), set 
points (SP), outputs 
from controllers (OP), 
laboratory data and 
online analysers. This 
DT of the plant is the 
most accurate and 

Figure 1. Comparison of data: digital twin data (dashed) and plant data (solid).

Figure 2. Graphical description of some data processing in the digital twin inputs.
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will give the operator more scope for optimisation and 
control. The only problem with this is that unlike the other 
solutions, it is necessary to build a more complex model and 
integrate it into the plant system. 

For example, in a distillation column, it is interesting to know 
the composition of the distillate and the composition of the 
bottoms for its correct operation. But beyond that, the price of 
an online analyser project can be around €500 000. Moreover, an 
online chromatograph takes samples every 10 - 15 minutes and is 
also affected by the dead times of the tubbing. This means that 
a lot of control and optimisation margin is lost, especially in 
continuous processes that run non-stop for years.

At the same time, inferences are not only used for operators, 
but more usually for advance control applications. They tend to 
be widely used in predictive variable controllers (MPC). These are 
very well integrated in the industry as their implementation is 
relatively feasible and usually gives good results. Finding key 
hidden variables and replacing controlled variables with more 
optimal ones can improve control and production.

How is a DT developed from a dynamic 
model?
DT projects have a similar development structure to MPC 
projects. As a first phase, it is very important to have a clear 
understanding of all the instrumentation and control in the plant 
and to make an analysis of the historical data to detect that 
everything is working correctly. For this step, simplified steady 
state models are usually developed as they allow the operator to 
close energy and material balances.

Once everything is clear, the independent variables of the 
process have to be defined. These variables are the manipulated 
variables (MVs) and the disturbance variables (DVs) – mainly 
those that will affect the process and depend on time 
(SPs, boundaries, OPs).

Thereafter, a dynamic model is built and validated with 
historical data (10 to 30 days and 5 - 60 seconds sampling). 

With this model, it is possible to know how well the model fits 
and where to focus the efforts to match the simulation with the 
plant data. Figure 1 shows a model that has run with the plant 
data. The advancement of values in time compared to online 
chromatographic samples can be seen. Nowadays, as a result of 
computational power and with the help of automation 
algorithms, it is becoming easier to match these commercial 
models to historical plant data.

As the DT model is fed with plant data – which is affected 
by all the physical phenomena that can affect the 
instrumentation – it is necessary to make a treatment to ensure 
that the plant data is consistent. Usually, different 
transformations are applied to deal with instrumentation failures, 
spikes and noise (Figure 2). Plants and their behaviour are 
dynamic, so it is necessary to differentiate between the changes 
they undergo. On the one hand, the system has to be able to 
deal with unknown DVs, and on the other hand, it has to deal 
with physical changes in the equipment (e.g. fouling, clogging of 
equipment, failures). Therefore, it is important that the model 
reconciles and monitors these changes in real time. If the impact 
of an unknown DV is significant, the DT will not track the plant 
and in this case it is recommended to measure that paticular DV 
and potentially incorporate it into the MPC controller. 

Some logic has to be applied to deal with certain plant 
scenarios, for example, switching from pump A to pump B, 
starting parallel trains or the shutdown of the plant. Finally, with 
the model already developed and tested, the variables to be 
exported are defined and connected to the realtime database 
of the plant. A subsequent validation is carried out with the 
system connected, first in open loop to monitor, and then in 
closed loop with the MPC to optimise, as shown in Figure 3.

Benefits
DT technology offers a number of benefits, including the 
following:
n	 Inferential: the DT can calculate pressures, temperatures, 

flow rates and compositions for each stream in the plant, or 
for each tray in a column. 
This data can be used by 
MPC controllers or 
operators, or backed up by 
online analysers.

n  Alarm warning: having a first 
principles model as the 
basis of the DT calculation 
allows operators to have a 
comparison between what 
should happen and what 
actually happens in the 
plant. With this insight, 
operators can predict if the 
process and instrumentation 
is operating efficiently.

n    ‘What if’ scenarios: DT 
always operates in the 
current state of the plant 
and can therefore be used 
by engineers to evaluate a 
change (e.g. set point, 
control parameters, 

Figure 3. Simplified flow diagram between an MPC, DT and the process unit.
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equipment parameters, boundary conditions) before it is 
actually taken in the plant.

These types of projects are currently new in the industry 
and are being applied in different areas of the hydrocarbon 
sector. One of these applications is at the start of greenfield 
plants. Once the plant has started up, there are many unforeseen 
events and it is likely that equipment may not be working as 
designed. This can be due to multiple reasons including control 
settings, diferent boundaries, process anomalies, etc. Through DT, 
operators may be able to detect these errors, correct them, or 
leave them planned for future implementation of improvements. 
This is an application that allows the detection of these 
problems in a fairly simple and fast way, meaning operators can 
avoid living with these problems for years (as plant myths) until 
they are eventually realised and resolved at a much later date.

MPCs work by controlling a series of controlled variables 
(CVs) in a zone defined by an upper limit and lower limit. Most of 
the CVs in MPC controllers typically correspond directly to the 
plant instrumentation and online analysers.

Some of the CVs are labelled as ‘critical CVs’, meaning that 
the MPC switches off if any of these fail. The DT can provide 
backup values for these critical CVs. At the same time, there are 
situations where it is interesting to have CVs that are not 
measured in the plant in order to optimise. As previously 
mentioned, it is difficult to quantify the optimal instrumentation 
needed in the plant. For example, a deethaniser distillation 
column can have different control philosophies. The objective is 
always the same: to separate between C2s and C3s. But 
depending on the process, the reboiler duty will be increased to 

avoid C2s in the bottom or, on the contrary, the condensation 
will be increased to avoid C3s in the head. This creates a situation 
where operators will have to decide what to increase and what 
to sacrifice. Normally, operators only have online composition 
analysers where they need to meet the product specification. 
With a DT, operators can infer composition that is not measured 
and, therefore, control the column in the most optimal way.

The dynamic model of the DT is also used to perform other 
offline tasks. One of these tasks is to improve the performance 
of MPC applications. The dynamic models are used to calculate 
the true process gains (CVs vs MVs/DVs) for the whole operation 
range of the plant. With this data, the APC engineer can define 
the best MPC solutions (models validity, models multipliers, 
multiple models, etc).

Another task is to use the dynamic model to generate virtual 
data to train deep reinforcement learning (DRL) controllers. This 
virtual data is provided for the whole operational envelope of 
the plant, and the data is not contaminated by unmeasured 
plant perturbances or noise. 

Conclusion
New technologies are allowing well known dynamic process 
simulators to have even more potential than they currently have. 
They allow more robust systems to be built, which are more 
powerful and can have new useful functionalities. The prediction 
of plant behaviour, the improvement of safety, and the 
maintenance of equipment are critical points to which more 
resources are being dedicated continuously. DTs are an extremely 
valuable tool which can be used to improve the operation of 
plants and provide assistance to plant issues. 
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