IN TRITIUM PROCESS Project: Advanced tools for ITER tritium plant systems modelling & design inproces Simulation to Business. Knowledge to Profit.

<u>E. Iraola^{1,2}, J. Mª Nougués¹, J. A. Feliu¹, G. Campanya¹, L. Batet², L. Sedano^{2,3}</u> ¹ INPROCESS Technol. & Consult. Group, Gran Vía de Carles III, 86, E-08028 Barcelona. ² Universitat Politècnia de Catalunya, Diagonal Av. 647, E-08028, Barcelona. ³ FUS ALIANZ[®] S/E&C, Camí Reial 14-17, E-43700 El Vendrell, Tarragona.

IFUS ALIANZ® Science, Engineering and Consulting

OUTLINE: Advanced tritium transfer modelling tools for ITER/DEMO Plant Systems Aspen HYSYS are developed based on our large experience of Chemical Plants Systems modelling; scientific background and tritium expertise.

Modelling routines for 5key unitary operations for tritium transfer isotopic processes at Plant systems:

- System PREDICTIVE MODELLING is a historical top level scientific milestone of tritium technology.
- Tritium **PREDICTIVE MODELLING** is today a challenge for final design and licensing of T-systems in ITER.
- **PREDICTIVE MODELLING** impacts on:

(1) isotopic permeation (2) cold trapping (3) absortion/desorption (4) cryodistilation

(1) flexible operational reliability of Plants systems as support for coming dynamic CODAC; (2) safe management and control of extremely large functional complex systems; (3) economy of expensive and scarce fuel.

- Anticipating the future, tritium self-sufficiency demonstration in tritium breeding systems comes from **PREDICTIVE MODELLING**.
- There exist no qualified nuclear tools for ITER and only QA guidelines for their development and use and R&D efforts.

"ADVANCED PREDICTIVE MODELLING" TOOL = UNITARY OPERATIONS MODELLING BASED ON THERMODYNAMIC PRINCIPLES

				Г	C [Dai	1 12 , 3	0	14	.04	1	5.70	10.04	17.72	
	4.7	0.8541	0.9365	т (к)		D(H ₂ .He)		D(HD He)		D(D ₂ He)		D(HT He)	D(DT He)	
	4.8	0.8503	0.9326	208.1		7.0.10-4		6 1 10-4		5 7 10-4		5 1 10-4	4 2 10-4	
\mathbf{M}	4.9	0.8467	0.9288	290,1		7.0 10		0.1 10		5.7 10 *		5.1 10	4.5 10	
	5.0	0.8431	0.9252	300		8.2 10 7		7.2 10 -		6.8 10 -		6.5 10 '	5.8 10	
	6.0	0.8128	0.8948	400		1.0 10 3		9.2 10-		8.8 104		8.4 10-4	7.1 104	
	7.0	0.7895	0.8710	500		2.2 10-3		1.1 10-3		9.9 10-4		9.2 10-4	8.2 10-4	
	7.0	0.7000	0.0715	600		3.2 10-3	3.2 10-3		2.3 10-3		.1 10-3	1.8 10-3	1.1 10-3	
	8.0	0.7707	0.8555					H-0	НОС		D-0	T.O	нто	
	9.0	0.7551	0.8382		T [ºC]		1	00.00	101.28		101.42	101.51	101.8	
	10.0	0.7419	0.8249		Pres. Vap (mm Hg)		2	23.76	22.12		20.6	19.8	17.2	
	12.0	0.7201	0.8026		@25 <u>₽C</u>									
	14.0	0.7026	0.7844		Temperatura [<u>PC</u>]			H ₂ O	HDO 1.075		D ₂ O	T ₂ O	HTO 1.005	
	16.0	0 6879	0 7690		50			1	1.075		1.134	1.133	1.055	
	18.0	0.6753	0.7556			100		1	1.026		1.052	1.064	1.030	
	20.0	0.0733	0.7330					2000	c		40000	45000	F000C	
	20.0	0.6643	0.7439		H2+T2←→2HT			4.83		<u>.</u>	400≌C 5.27	450ºC	500≌C	
	25.0	0.6416	0.7196		HT+H2O€→H2 + HT(2.058 1.8		79	1.741	1,632	1.545	
	30.0	0.6236	0.7003		T2+H2O←→ HT+HTO			10.09			9.16		8.34	
	35.0	0.6087	0.6844	Van Hook; Journal of Chemistry Physics 72, 1234 (1968)										
	40.0	0.5962	0.6710	$a[A]+b[B] \leftrightarrow c[C]+d[D]$ $R = K_f([A]^a[B]^b - \frac{1}{\kappa} [C]^c[D]^d)$										
	50.0	0.5758	0.6491											
	75.0	0.5405	0.6111											
	100.0	0.5167	0.5855	• $K/T = U \cap \mathcal{L} \to UT \cap UT = 2 e^{-29}(T + 1(U \cap O + 1(UT))/(2 e^{-44}))$										
	150.0	0.4850	0.5512	• $K_1(12, 120 \leftarrow \rightarrow HTO, H_2) = 1.e-29([HT] [H2O]- [HTO] [H2] /Keg(2))$										
						12(11) 120		,	-27 - 1.0	2-7()	[] [20]	[][2]	/1000(2/)	

ONGOING CONCLUSIONS

 \rightarrow TRITIUM PLANT UNITARY OPERATIONS MODELLED ON THE BASIS OF FIRST THERMODYNAMIC PRINCIPLES

→ IMPLEMENTED IN ASPEN/HYSYS ROUTINES

\rightarrow INTEGRATION INTO FULL PLANT SYSTEM COMPLEXITY **ONGOING.**

POSTER ID 5-17

1,8

2,3

1000/T[K]

2,8

3,3 3,8

IN_TRITIUM PROCESS Projects is partially founded by Spanish Economy and Competitiveness Ministry (CDTI)

♦ P=1 kPa

P=0.1 kPa

▲ P=0.01 kPa

P=0,001 kPa