Dynamic Simulation Tools for Isotopic Separation System Modelling and Design

Eduardo Iraola^{a,b}, José M. Nougués^a, Josep A. Feliu^a, Lluís Batet^b, Luis Sedano^c ^aInprocess Technology & Consulting Group. Gran Vía de Carles III, 86, 08028. Barcelona, Spain ^bETSEIB, Universitat Politècnica de Catalunya · BarcelonaTech (UPC). Department of Physics. Diagonal 647, 08028. Barcelona, Spain ^cFUS_ALIANZ Science, Engineering & Consulting. C/ Nord 19, Atic, 43700. El Vendrell, Tarragona, Spain

Motivation

Cryogenic distillation is a key process for tritium processing in fusion: it is necessary for isotopic separation but is prone to hold high tritium inventories.

Process simulation can be a useful tool for real-time tritium monitoring and the design of new fusion systems. Employing a commercial simulator such as Aspen HYSYS can be of interest to new agents in the industry and will be used in this work.

Inputs

The input data used the modeling in this research are:

- The design of TSTA experimental columns [1].
- Hydrogen thermodynamic data [2].

	H2 (nH2)	HD	ΗТ	D2 (nD2)	۵
M (g/mol)	2.01588	3.02204	4.02399	4.02820	5.
α	-0.219	-0.18	-0.12	-0.15	
Ть (К)	20.397	22.14	22.906	23.6651	2
Т _с (К)	33.19	35.91	37.13	38.35	
<mark>P₀ (kPa)</mark>	1313	1484	1570	1650	

The thermodynamic model parameters in [3] for the Peng Robinson Twu-alpha equation at cryogenic conditions.

	L	Μ	Ν
H ₂	0.7189	2.5411	10.2000
HD	0.1009	1.0204	1.9102
НТ	0.6820	1.2469	0.2000
D ₂	1.2584	6.1846	0.0759
DT	0.9783	1.6726	0.2000
T ₂	1.0943	1.6009	0.2000

Dynamic experimental data in [4].

first column at TSTA.

The model fits the distillation purities:

	FEE	ED	TOP PRODUC		
	Sherman	HYSYS	Sherman	HYS	
H ₂	0.00014	0.00014	0.00053	0.0	
HD	0.01000	0.01001	0.04100	0.0	
ΗТ	0.00930	0.00931	0.03600	0.0	
D ₂	0.24800	0.24814	0.91800	0.8	
DT	0.48300	0.48327	0.00470	0.0	
T ₂	0.24900	0.24914	6.0E-7	6	

