

HYSYS-based Operator Training Simulator for a new Cumene & Phenol plant

Manuel Pedraza, Pierre Lahaie, Zhen Li (CEPSA Chemical Shanghai) JoseMaria Ferrer, JoseMaria Nougues, Rodolfo Tona, Carlos Alcoverro (Inprocess)

OPTIMIZE[™] 2015

4-6 May, 2015
The Westin Waterfront Hotel | Boston, MA

Outline

- Piloting a process plant
- Project background
- Why OTS investment
- > The OTS
- > OTS value

Piloting a process plant

If your process plant were the Saturn V, your panel operators will be the astronauts

Now, think about the training hours of an astronaut

	Ethylene plant	Saturn V				
Throughput	800 kty ~ 90 t/h of Naphta	1 st Stage burns 14200 t/h (Kerosene) with 32200 t/h Liquid Oxygen				
Working time	~ 50 years	4 hours, 20 min				
Instruments	~ 5000 AI/DI	Stage-1 about 900 instruments, Stages 2&3 ¿?				
Cost	~ 1.5 Billion\$	Per launch: \$494 million in 1964–73 dollars (~\$3 billion today)				
PID loops	~ 800 loops in ICSS	~ 20 faceplates in Command Module				
Training time before launch	3-9 months	Two years for Apollo missions (they are test pilots before) All simulators > 50 million\$				
OTS cost	0.8 – 1.2 Million\$					

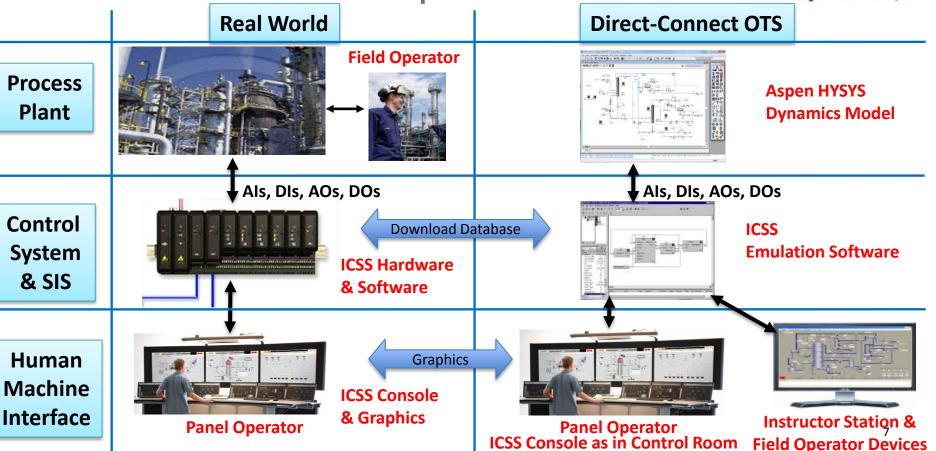
OTS is a multiplier of every hour invested in training

Project background

CEPSA Chemical Shanghai
("CCS") is building the new
Cumene and Phenol plants in
the Shanghai Chemical Industry
Park (SCIP), with a capacity to
produce:
250kMt of phenol and
150kMt of acetone

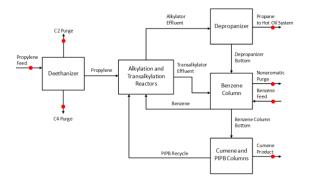
CCS is using OTS to reinforce the training for all the operation staff, with plenty of scenarios, to improve the economical operation of the plant, such as normal operations, start-up and shutdown, equipment malfunction and emergency conditions.

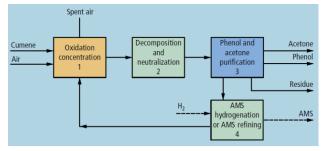
Inprocess Technology and Consulting Group ("Inprocess") has rich modeling and project experiences for OTS (Operator Training System).



The OTS overall objectives were:

- Train the chinese/spanish operation staff on the process and the DeltaV system in Shanghai and Huelva (Spain).
- Reduce the risk of major operational incidents
- Reduce start-up time
- Increase plant on-stream time and performance
- Verify Process Control & Safety Systems operation
- Avoid equipment damages
- Provide a test-bed system for engineering analysis


The OTS: Concept



The OTS: Model Scope

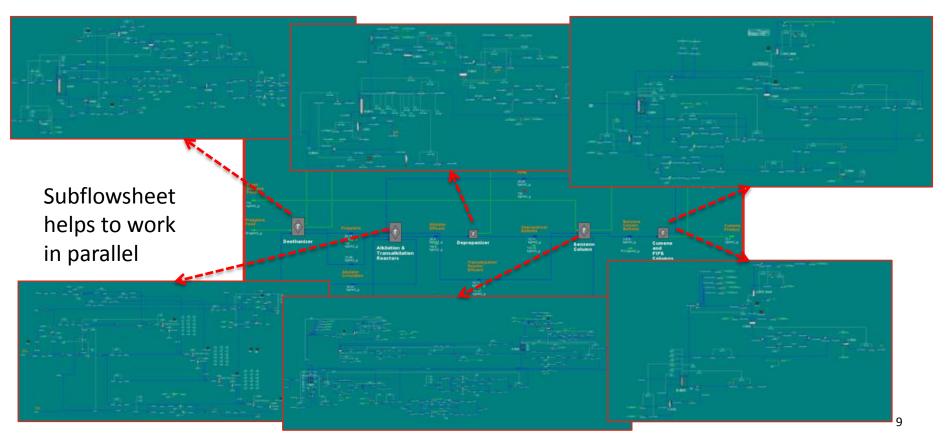
Challenge

Multiple chemical reactions, many separation units (18 distillation columns) and large recycles

Simulation Scope Cumene

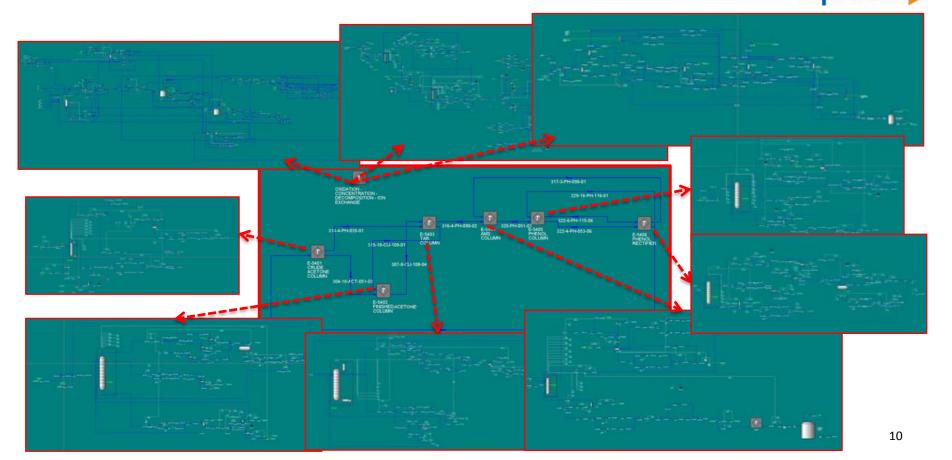
•	Equipments:	60
•	Isolation valves:	20
•	Control valves:	91
•	Relief valves:	20
•	PID loops:	90
•	I/O Count:	1000
•	Component List	28

Component List-Cumene					
H2O	Benzene				
Methane	Toluene				
Ethylene	E-Benzene				
Ethane	Cumene				
Propene	n-Pbenzene				
Propane	AMS				
Cyclopropane	i-BBenzene				
Propadiene	m-Cymene				
M-Acetylene	p-Cymene				
1-Butene	1-E-4-iP-BZ*				
i-Butene	13-iP-BZ				
i-Butane	n-Hexyl-BZ				
13-Butadiene	135-iP-BZ*				
n-Hexene	DiPhenylC3				


Simulation Scope Phenol

Equipments:	132
Isolation valves:	62
Control valves:	210
Relief valves:	41
 PID loops: 	204
I/O Count:	2000
 Component List 	35

Component List-Phenol					
H2O	diAcetone-ol				
Hydrogen	BZoicAcid				
Nitrogen	o-Cresol m-Cresol				
Oxygen					
Methane	p-Cresol				
CO	M-PH-Ketone				
Formaldehyde	2MBenzoFuran				
FormicAcid	AMS				
Methanol	Cumene				
Oxalic_Acid	DMPHCarbinol				
AceticAcid	CumHyPeroxid				
Propanal	o-Cymene				
Acetone	m-Cymene				
Acetol	p-Cymene				
Benzene	pCumylPhenol				
Phenol	DCumPeroxide				
Mesityloxide	H2SO4*				
3Mcycpentene					


Cumene HYSYS model

Phenol HYSYS model

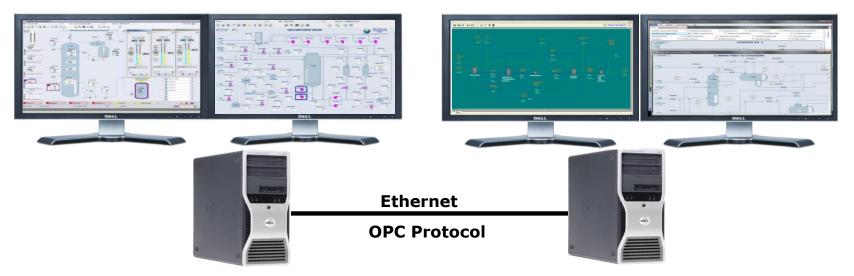
The OTS: modeling highlights

Reactor Dynamics

The HYSYS CSTR reactor was used with rigorous kinetics.

Reactors parameters and kinetics constants were adjusted to obtain accurate dynamics.

Hydraulics Effects in Reactor Dynamics


Compressors push air to the bottom of the Oxidizers and the liquid mass is in suspension, but HYSYS CSTR is an ideal homogenous reactor. These dynamics were modeled, therefore when compressor trips the Oxidizers levels are affected.

Calorimeters DeltaT

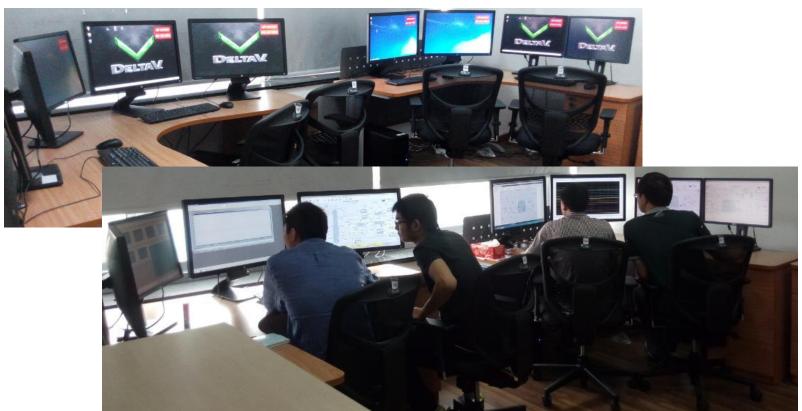
They are the sensors of the reaction. They were calibrated with the same dynamics that the existing Huelva (Spain) plant was providing.

The OTS: Architecture

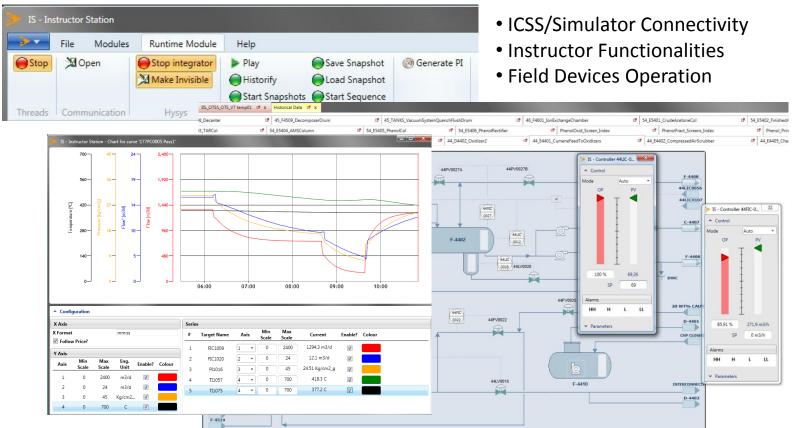
DCS Operator Workstation

- Plant Control System Emulator DeltaV Simulate Pro
- Operator HMI, DCS DeltaV

Instructor Workstation


- Plant Dynamic Model (HYSYS Dynamic model)
- Inprocess Instructor Station
 - HMI for Field Operated Devices
 - Simulation Management
 - Communication

An OTS replica was installed in Huelva complex (Spain)



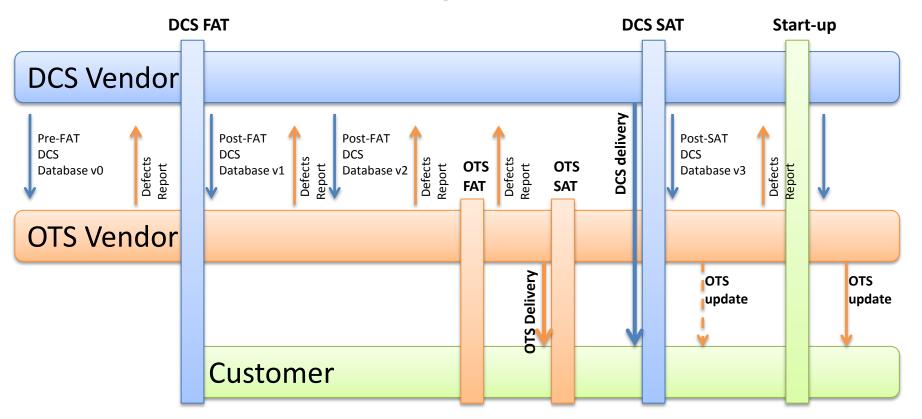
The OTS: DeltaV Operate

The OTS: Instructor Station

The OTS: Scenarios

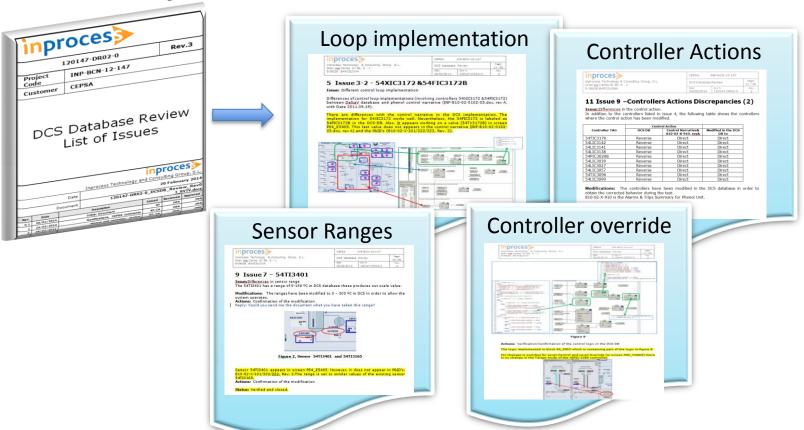
50 scenarios were developed:

- Operational scenarios:
 - change utilities conditions
 - change in raw material quality
 - > throughput changes


- •Procedure scenarios:
 - > Start-up
 - > Shutdown

- Safety Scenarios:
 - > Equipment power loss
 - Instrument air failure
 - > Critical utilities loss

- Equipment failures and malfunctions:
 - > Column steam failure
 - > Exchangers fouling
 - > Instrument failure


OTS value: Debug ICSS code

Important: OTS Vendor acts as an independent auditor of the ICSS functionality

Examples ICSS database review

46 operators have been trained: 1998 hours in total, training table sample

1. GET FAMILIAR:

With the process
With the procedures
With HMI navigation and controls

2. IMPROVE:

Operation and safety procedures Uniform skills levels in all operators Rational thinking Time to react

3. RESULTS:

Increased Safety Reduce Start-up time Off-spec reduction

			1	ue	Wed	Th	u	Eri	Mo	n
~	~	~	10-Jun	*	11-Jun *	1.2-Jun 1	13-Jun		16-Jun 3	17-1
1	Han Chunxing	韩春星	0800-10	00						080
2	ZhaoXu	赵旭	0800-10	00						080
3	Zhan Meng	展装置	1000-12	00						1000
4	Zhao Feng	赵峰	1000-12	00						100
5	Wu Welwel	長伟伟	1230-14	30						1230
6	Wang Yan	王焱	1230-14	30						1230
7	Lu Jian	陆坚	1430-16	30						143
8	Wang Halyang	王海阳	1430-16	30						1430
9	YangChaolong	杨起龙			0800-1000					
10	YangYiyong	杨奕昊			0800-1000					
11	Ba o Jia ngh on g	鲍江湾			1000-1200					
12	BallXusheng	白旭升			1000-1200					
13	Chen Xihul	陈新辉			1230-1430					
14	Fel Ping	農平			1230-1430					
15	Chen Hulwen	陈会文			1430-1630					
16	Kang Weltang	慶为塘			1430-1630					
17	Wang Changping	汪长平				0800-100	0			
18	Zhang Hallong	张海龙				0800-100	0			
19	Waing Chengcheng	王诚诚				1000-120	0			
20	Zhou Rungi	周润琪				1000-120	0			
21	Yang Yi 'hao	杨亦巖				1230-143	9			
22	Xu Zhong'hao	徐忠康				1230-143	0			
23	Shen Si'ta o	沈思涛				1430-163)			
24	Bao Yue	包越				1430-163	0			
25	Wang Mel'ling	王美玲					0800-	1000		
26	Yang Qiang glang	杨莲莲					0800-	1000		
27	Luo Hal'ping	骆海平					1000-	1200		
28	Zhang Jia'qi	张嘉琪					1000-	1200		
29	Zhang Ling	张玲					1230-	1430		
30	Ya o Chao'yi	姚起亿					1230-	1430		
31	Ye Qin'mel	計琴梅					1430	1630		
32	Uu Er'long	刘二龙					1430	1630		
33	Yao Ye'zhou	姚叶舟							0800-1000	0
34	Chu Yuan	槽湖							0800-1000	0
35	Jin Yi'hul	金怡辉		_					1000-120	0
36	Mo Zi'ji e	莫孖杰							1000-120	
37	Zhou Zi Yun	周子遊							1230-1430)
38	Wu Qlao'wel	吴桥伟		_					1230-1430)
39	TangZi'li	唐自立							1430-1630	0
40	Yu Chun	余淳							1430-1630)

OTS value: Operating range

In the Shanghai petrochemical area, there were several alternative providers of feed propylene, each with different grades and other distributions of Lights and Heavies components.

CEPSA Operations requested to investigate the process operating constraints (valve saturation, duty limits, impurities accumulations) with different streams compositions of propylene feed.

The model proved that, making certain SetPoint adjust, other propylene grades were able to be handled by the plant.

OTS ownership

There is one important aspect when Operating Companies decide to invest in OTS:

The OTS itself does not do the training and knowledge transfer

The Operating Company needs to design the operator competency program making use of the OTS as an integral tool of the training programs.

Like NASA does with astronauts

Like Airlines do with pilots

Like Mercedes does with Hamilton

Inprocess helps to design and complement those training programs with the use of the OTS. Resources and workflows need to be defined and budgeted.

Ongoing operator training programs in CEPSA:

- Petrochemical complex San Roque
- Refining business unit

HYSYS as OTS engine

Using HYSYS Dynamics as OTS simulation engine has some advantages:

- 1.- It is a known software inside CEPSA and most of the engineers are familiar with it
- 2.- It can increase the rigor as needed, depending on training objectives
- 3.- It is flexible enough to develop custom items (spreadsheet, UserVar, Extensions)
- 4.- It is powerful enough to handle >5000 I/O tags/sec in realtime in one PC.
- 5.- Models can be taken from the OTS to run other operations/eng. studies
- 6.- It is easy to maintain for typical changes (new instrument, new valves, loop changes, etc)

Conclusions

- > OTS improves the ICSS testing and debugging
- > OTS could reduce the major operational incidents
- > OTS is a good platform to evaluate operator's skills and to uniforms them
- > HYSYS-based OTS is a suitable tool to validate raw material planning decisions
- > HYSYS-based OTS secures reusability of the process model for analysis
- ➤OTS was executed within time and budget; OTS team was adaptive to the EPC and ICSS schedules.
- ➤ This was the first high fidelity HYSYS-based OTS in CEPSA; as a result CEPSA is considering OTS for new and existing plants. CEPSA is executing the 3rd training simulator with Inprocess.

Q&A,

Thank you

Inprocess contact:

JoseMaria Ferrer

Inprocess Technology & Consulting Group, S.L.

Phone: +34 933 308 205 Cell: +34 607 570 685

josemaria.ferrer@inprocessgroup.com