Developing inferentials based on Digital Twins: Distillation case studies

Landon Melcher JoseMaria Ferrer

Advanced Control and Optimization World User Group (ACOWUG) 2022

> *08 & 09 June, 2022* June 8, 2022 8:00 AM - 10:30 AM CDT June 9, 2022 8:00 AM - 10:30 AM CDT

- Who we are
- I don't want to believe: Analyzer vs. Peng-Robinson
- Our Lifecyle Digital Twin vision
- Developing Inferentials with Digital Twins
- Customer Case Studies in distillation
- Your takeaways, Q&A

Who we are

I DON'T WANT TO BELIEVE

Science is built on proven laws. There is not option to don't believe them.

Process Simulation is not a question of believing or not

Strangely enough, plants are following those laws

How much do you trust in them?

Online Analyzers require a proper maintenance and regular calibration to produce reliable results.

We use them to control the plant

Ding-Yu Peng

Don **Robinson**

University of Alberta, Department of Chemical and Petroleum Engineering

In 1976, Dr. D. Robinson and Dr. Ding-Yu Peng developed the **Peng-Robinson Equation of State**.

EoS equations are used in simulators to the calculate Vapor-Liquid equilibrium of mixtures of hydrocarbons.

We use them to design the plant

Our Lifecyle Digital Twin vision

Also called:

LifeCycle Operator Training Simulator (LC OTS)

Or

Multi-Purpose Dynamic Simulator (MPDS)

Inprocess' Approach to Digital Twins inprocess

- Digital Twins are virtual copies of physical assets and their operating behaviours
- This definition has several points of view which are complementary to each:

Contextualized 3D models

Mechanical and structure models

First-Principles Models

inprocess The Process Digital Twin concept

- The Process Digital Twin is a *first-principles* steady-state or dynamic simulation model that contains:
 - all the <u>process</u> layout and streams conditions (Compositions, Pressure, Temperature, Flow, etc);
 - all the <u>equipment</u> geometric data (dimensions, elevation, tray sizing, sensor location, etc);
 - all equipment manufacturer <u>performance</u> data (pump curves, compressor curves, heat exchanger rating data, etc);
 - all actuated <u>valves</u> (valve pressure drop, sizing, characteristic, etc);
 - and all the <u>control and instrumentation</u> (control loops, PID algorithms, instrument ranges, tuning constants, etc).

All this information is combined in a Process Model, built in a *high-fidelity* simulation tool like **Aspen HYSYS**. Depending on the purpose, it can be **Steady State** or **Dynamic**

Lifecycle Process Digital Twin

Plant lifecycle

Developing Inferentials with Digital Twins

inprocess

The Process Data

Plant sensors provide vast data sets of what is "Out There". With the right visualization tool **an experienced eye** can make clever use of it.

The Laws

Hundreds of "Data Scientists" worked hard along the centuries to discover the laws of how matter behaves. Those **laws still last today**. Industrial Human Intelligence

The Truth

The Calculator

Process simulation is only a macrocompilation of physics, chemistry and thermodynamics laws smartly coded in an interactive computer application

The Engineer

A combination of skills in chemical engineering, process control, plant operation coupled with plant data visualization, process simulation, programming and some common sense.

inprocess

Building distillation Inferentials with HYSYS

inprocess Building distillation Inferentials with HYSYS

HYSYS case	Method	Deliverable	Time
Simple HYSYS case	Develop Multi-case study and correlation	Report with Explicit Algebraic Formula	2-3 days
Calibrated column with HYSYS Steady-State	Develop Multi-case study and correlation	Report with Explicit Algebraic Formula	2-3 weeks
	Develop Multi-case study, generate raw data set and install application	Online IIS application with Lookup table or HYSYS Steady-State	3-4 weeks
Calibrated column with HYSYS Dynamic	Configure and install application	Online IIS application with HYSYS Dynamics runtime	4 weeks (model from OTS) or 8 weeks

Customer Case Studies in distillation

- Such an inferential can be calculated based on the Deethanizer bottoms conditions.
- HYSYS data was regressed to build an Explicit Algebraic Formula

TI

 \sim

Case Study 2: C3= in C3Splitter bottoms

inprocess

Case Study 2: C3= in C3Splitter bottoms

Case Study 3: Depropanizer bottoms

- The bottom of the column does not have an online analyzer. The DMCPlus cannot operate optimally if it does not have the bottom propane as a controlled variable.
- The main variables that affect the propane at the bottom are the equilibrium pressure and temperature, but also the C4s in the inlet.
- It was done in HYSYS a multiple 3-variable Case Study and fitted with a multivariable non-linear correlation in an Explicit Algebraic Formula.

Case Study 4: Caprolactam in vacuum column bottoms

Case Study 5: Double C3Splitter, C3= in bottom

C3= content in C3splitter bottoms is measured by a picky Online Analyzer.

HYSYS data was regressed to build an Explicit Algebraic Formula

Case Study 6: Double C3Splitter, C3 in PGP product

Case Study 6: Double C3Splitter, C3 in PGP product

Your takeaways

Your takeaways

Excel file to tune the AspenIQ BIAS-update parameters (Tau1, Delay1, ABIASFRAC, etc)

Send email to: josemaria.ferrer@inprocessgroup.com

Customer presentation about using HYSYS Dynamics to generate massive virtual plant data to develop ML soft-sensor

Easy to read whitepaper about Best Practices to request and exploit Lifecycle Digital Twins

Thank you!

Q&A

Landon Melcher

JoséMaría Ferrer

www.inprocessgroup.com