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b ETSEIB, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Department of Physics, Diagonal 647, 08028 Barcelona, Spain 
c FUS_ALIANZ Science, Engineering & Consulting, C/ Nord 19, Àtic, 43700 El Vendrell, Tarragona, Spain   
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A B S T R A C T   

The realization of nuclear fusion energy is nowadays based on the concept of tritium breeding and the success of 
the ITER experiment. The latter relies today on a static monitoring approach to fulfill the emission limits imposed 
by the regulatory institutions. Artificial intelligence applications for fault diagnosis and process monitoring 
anticipate potential for the dynamic management of tritium in complex plant systems. This paper explores the 
dynamic tritium inventory management issue in complex systems, reviews the diverse artificial intelligence 
techniques and discusses the most promising approaches for ITER-like plant system match balance monitoring.   

1. Introduction 

Tritium match balance monitoring is fundamental for ITER licensing 
and operation, as well as for future fusion commercial reactors. On the 
one hand, tritium is scarce and the fusion process needs to be self- 
sufficient [1]. On the other hand, tritium is a hard to track component 
that is radioactive and can permeate structural materials [2]. Its radio
activity nature makes it necessary to ensure the emissions do not over
pass a certain limit. This is why the local authorities (ASN/IRSN in 
France) require to assess the total tritium inventory in the plant to 
guarantee that it is operating correctly. 

The current strategy for tritium monitoring in ITER’s Tritium Plant is 
conservatively based on a static procedure. This procedure consists of a 
two-step approach in which any effluent in the tritium plant susceptible 
to containing tritium traces must be derived to the Storage and Delivery 
System to assess the total tritium inventory. A calorimetry test performs 
this assessment and trapped tritium inventory both in the vacuum vessel 
and in the rest of the plant can be accounted for. Thus, a halt in the plant 
is needed, as it is well accepted that no plasma operation can take place 
while the tritium inventory assessment procedure is in progress [3]. 

This conservative static approach is constrained by the limitations of 
the current sensing monitoring solutions and the regulatory tritium 
emissions limits [4]. In this strategy, the flexibility of the plant operation 
is reduced and the tritium self-sufficiency, which is a key aspect to 

secure in a fusion reactor, is difficult to provide due to the mandatory 
periodic shutdown procedures. A dynamic monitoring approach could 
become an alternative to this scheme and boost the performance in the 
operation of tritium plants. This new kind of approach would need to 
rely on improvements in dynamic modeling, sensor solutions, and pro
cess monitoring algorithms. 

Dynamic modeling codes for tritium plant components are under 
development [5,6] to support tritium balance matching. Dynamic 
modeling is particularly needed taking into account that in-vessel in
ventories remain uncertain and mass balance cannot be directly 
accounted for. There is no consensus among the scientific community 
concerning the models for trapped inventories in the torus [3]. This lack 
of agreement can heavily delay the achievement of the continuous and 
safe dynamic operation of a fusion power plant. In this context, tritium 
processing models may imply extra data for in-vessel assessments. 

Tritium sensors are essential to perform tritium balance monitoring 
and assess the amount of tritium throughout the plant. However, there is 
no sensor solution able to provide a measurement accuracy over the 3–4 
digits, and a sensor technology that can cover the whole range of con
centration in which tritium can be found in a fusion reactor does not 
exist [4]. 

Special applications of artificial intelligence to process monitoring 
arise as a possible contribution to the problem of tritium monitoring in 
fusion power plants. This paper is designed to outline the research 

* Corresponding author at: Inprocess Technology & Consulting Group, Gran Via de Carles III, 86, 08028 Barcelona, Spain. 
E-mail address: eduardo.iraola@inprocessgroup.com (E. Iraola).  

Contents lists available at ScienceDirect 

Fusion Engineering and Design 

journal homepage: www.elsevier.com/locate/fusengdes 

https://doi.org/10.1016/j.fusengdes.2021.112409 
Received 2 December 2020; Received in revised form 8 February 2021; Accepted 23 February 2021   

mailto:eduardo.iraola@inprocessgroup.com
www.sciencedirect.com/science/journal/09203796
https://www.elsevier.com/locate/fusengdes
https://doi.org/10.1016/j.fusengdes.2021.112409
https://doi.org/10.1016/j.fusengdes.2021.112409
https://doi.org/10.1016/j.fusengdes.2021.112409
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fusengdes.2021.112409&domain=pdf


Fusion Engineering and Design 166 (2021) 112409

2

developed in the SMART_TC programme in which inprocess and 
FUS_ALIANZ collaborate with the Technical University of Catalonia to 
focus on proposing an advanced strategy for match balance dynamic 
monitoring in a tritium plant. Given the complexity of the task, the 
research will take advantage of the available computational capabilities 
and the advanced algorithmic approaches developed in the last years, 
combining several decision-making units in a multi-agent approach. 

Artificial intelligence has already been proposed for the assistance in 
fault diagnosis for industry [7,8] and specifically in the nuclear field [9, 
10]. Cases of success such as that shown by Yang and Mou [11] extend 
the interest of research in this field and manifests the promising deri
vations of their applications to new fields like tritium and fusion. 

The document is organized as follows. Section 2 formalizes the 
tritium monitoring goal and outlines the motivation and the needs of a 
new perspective of the monitoring issue. Section 3 performs a review of 
the techniques prone to be used in a tritium monitoring environment 
from a fault diagnosis perspective. Finally, Section 4 drives a discussion 
in terms of further challenges in dynamic monitoring and suggestions in 
the ongoing developments. 

2. Problem statement 

A fault can be defined as an event in a system that causes a variable 
or property of the process to deviate from an allowed range [12]. Faults 
can be related to a change in a process parameter, a change in a 
disturbance parameter, failure in actuators or failure in sensors. Fault 
detection and isolation is a subfield in control engineering that studies 
how to find out, anticipate and warn about deviations of the plant 
performance from acceptable limits, even if the standard control strat
egy fails to this aim. 

In tritium plants, faults can take the form of a gas chromatograph 
failing to function, the occurrence of glovebox overpressure or trans
ducers yielding wrong values [13]. But a higher level fault to be taken 
care of is the tritium inventory mismatch that can turn into potential 
emissions and thus break the regulatory limits over the 0.1% of the total 
inventory [14]. 

The main tool to manage the fault state of a process is the use of 
measurements. Tritium concentration sensing solutions vary from a 
wide range of accuracy and applicability and different measurement 
techniques, such as liquid scintillation counters, ionization chambers, 
proportional counters, He-3 measurement with mass spectroscopy, 
RAMAN spectroscopy, gas chromatography and calorimetry [4]. Among 
them, calorimetry is one of the few able to measure tritium at high 
concentrations by accounting for the tritium decay heat, but it yields an 
accuracy of 2–3 digits only. Ionization chambers and proportional 
counters are suitable only for gas-phase tritium. Ionization chambers 
suffer from a trade-off between accuracy and time response, depending 
on their volume and need tight re-calibration strategies. Proportional 
counters are more sensitive to measurements but do not fit for online 
purposes. For liquid samples, liquid scintillation counters are the main 
solution available. Scintillators are based on absorbing energy from the 
tritium decay to convert its energy into photons and use a counter to 
measure the activity of the sample. They can also be used for gases if 
bubbled along the solvent sample [15]. 

The limitation of tritium sensors in terms of accuracy, response time 
and sampling frequency, as well as the small order of magnitude of 
allowable tritium balance mismatch, drove into the decision of a con
servative static tritium inventory assessment in the design of the oper
ation strategy of the ITER tritium plant [3]. In this monitoring approach, 
any process stream liable to contain tritium traces needs to be processed 
and milked down of tritium through the fourth column of the Isotopic 
Separation System. The tritium ends up located in the Storage and De
livery System, where it is present in a high concentration level that al
lows its measuring through in-bed calorimetry tests [3]. Plasma 
operation cannot take place during the inventory assessment procedure, 
which implies the periodic halt of the experiments to fulfill the tritium 

accountancy needs. 
A static monitoring strategy is not efficient and would make the in

dustrial production of electricity in future fusion reactors costly and 
harm its feasibility. If an uninterrupted operation is desired for indus
trial operation, an advanced dynamic monitoring approach is needed to 
allow the continuous operation of the plant while guaranteeing a correct 
operating range. This progress would represent a landmark in the his
tory of fusion systems. 

Such a dynamic approach can be conceived by taking advantage of 
both dynamic simulation and artificial intelligence data treatment as 
follows. The plant or system needs to be divided into several monitoring 
sections or mass balance areas (MBA) to separate the problem into 
several assessment units. A model of the plant or systems would work as a 
digital twin [16] that matches the inventories in the process and com
pares the measurements with those of the modeled plant. Depending on 
that comparison, the simulation shall issue an assessment or decision 
regarding the fault state of the system according to a model-based 
monitoring approach (see Section 3). 

In parallel with the model-based reasoning, a set of data-driven 
intelligent units processes the data to complement the fault detection 
and diagnosis decision. These units, based on state-of-the-art techniques 
must have been previously trained with historical and simulation data 
and issue detection and/or isolation diagnostics depending on the state 
of the sensor data available from the process. 

Each time step, the online fault diagnosis system concludes the fault- 
related global decision based on the assessment of the likelihood of each 
data-driven and model-based units. The process of weighting the 
different decisions is a critical point and must be studied further (see the 
discussion in Section 4). A possible monitoring scheme is shown in 
Fig. 1, where n data-driven approaches issue fault-related decisions 
alongside a mathematical model method to provide an improved plant 
assessment. The scheme shall also isolate the origin of the fault in order 
to recommend the plant engineers and operators the next action to solve 
or prevent the incoming fault. 

Part of the difficulty in addressing tritium monitoring is caused by 
the low precision of tritium sensors. When the data-driven units are 
provided with a large enough data set for training, artificial intelligence 
can be used to narrow the uncertainty generated by tritium in the tritium 
plant. This way, the use of artificial intelligence together with sensor 
redundancy can help to tighten the gap of accuracy and allow for a 
dynamic monitoring strategy. 

3. Review of monitoring approaches 

Fault diagnosis can use from simple traditional techniques such as 
Shewhart graphs to advanced methods such as deep artificial neural 
networks. A broad classification separates data-driven methods, which 
derive models purely based on historical data, and model-based 
methods, which generate models that replicate the actual process 
based on first-principle mathematical modeling. 

Regarding data-driven techniques, some of them are supervised 
machine learning techniques, meaning by this that they need labeled 
data (i.e. each training example is known to belong to normal operating 
conditions or a certain fault class) while others are unsupervised and 
able to find hidden patterns that can be useful for fault detection 
purposes. 

Fault diagnosis mainly involves two separated steps: detection and 
isolation. Fault detection elaborates on detecting outlier data that imply 
non-normal operation conditions, while fault isolation focuses on 
identifying the precise location of the fault and the observed variables 
involved in it. This section will review the most interesting techniques 
prone to be applied in a tritium processing environment, some of them 
more suitable for isolation, detection, or both. 
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3.1. Rigorous multivariate statistical approaches 

The need for improvement in monitoring techniques regarding 
spatial correlations (influence of the state of an observed variable in 
other variables) led to the development of fault detection techniques 
based on multivariate statistics. In this area, dimensionality reduction 
techniques such as principal component analysis (PCA), Fisher 
discriminant analysis (FDA) and partial least squares (PLS) were 
conceived. 

PCA is a dimensionality reduction technique that projects the dataset 
into a lower dimension space while keeping the maximum degree of 
variance from the original dataset (see example in Fig. 2). This is done by 
performing an eigenvalue decomposition and projecting the data using 
the eigenvectors corresponding to the higher eigenvalues, the principal 
components. The principal components are orthogonal to each other and 
keep most of the variance from the original data set [17]. 

PCA is typically applied to the fault detection step, even though it can 
be also applied to the fault isolation step performing the appropriate 
discriminant analysis added as described so far. 

FDA and PLS are also dimensionality reduction techniques. FDA 
performs the projection in a way that the scatter between observation 
corresponding to the same class (same fault) is minimized and the 
scatter between observations belonging to different classes is maxi
mized, therefore directly serving as a fault isolation technique. PLS 
maximizes the covariance between the observation matrix and the class 
matrix [18], i.e. maximizes the scatter between data of the same class, 
by rotating the loading vectors iteratively until the regression is 

improved enough. 
PCA, PLS and FDA do not account for dynamic behavior by them

selves. In general, serial correlations (time-dependent) can be added by 
constructing an augmented input data matrix that includes lagged 
copies of the observed variables. The new matrix can be seen as a sliding 
window and the augmentation is parameterized by the lag parameter k 
and the embedding dimension M, such that the augmented matrix 
contains the vectors xi(t), xi(t − k), xi(t − 2k) and so on until 
xi(t − (1 − M)k) for all variables i = 1, 2, …, m. The augmentation 
parameter k shall be determined satisfying that the new coordinates are 
as independent as possible but without losing information of the system. 
This task can be systematically approached by minimizing the auto
correlation function (ACF) or the average mutual information (AMI) 
[19]. On the other hand, the embedding dimension parameter M must 
comply with including the periodic responses of the system. When 
applying the data matrix augmentation approach to the methods out
lined so far, their dynamic variants DPCA, DFDA and DPLS are obtained. 

3.2. Kernel approaches 

In contrast with the aforementioned techniques where the algorithm 
needs to generate a feature vector in order to perform the classification 
or clustering task, kernel-based methods rely on applying a kernel 
function on raw data. 

Kernels are similarity functions whose output is a measure of how far 
two samples lie, i.e. how dissimilar they are. They help in building a cost 
function that, if minimized, separates the observation space in several 
regions representing each class, i.e. each fault class (see example in 
Fig. 3). There are various types of kernels, one of the most popular being 
the Gaussian kernel or radial basis function (RBF) kernel [20], 

k(x, xi) = exp
(
−
⃦
⃦x − x(i)‖

2/2σ
)

where k(x, xi) is the similarity function for a test observation sample x 
and a landmark vector xi. The landmark corresponds to a training 
sample i of the same dimensions as x and σ is a hyperparameter related 
to the likelihood of the two samples belonging to the same class in the 
basis of a Gaussian distribution. 

Support vector machines (SVM) are a widely used supervised tech
nique based on kernels. SVM learn weights for similarity functions 
applied to all the training dataset by minimizing its cost function and 
doing a large margin separation of the data depending on their classes. 

Fig. 1. Hybrid fault diagnosis architecture.  

Fig. 2. Visualization of PCA dimensionality reduction from 3D to 2D. The PCA 
procedure finds the plane that minimizes the variability lost in the projection. 
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When using non-linear kernels such as RBF, they can learn complex 
classification functions like the one in Fig. 3. 

3.3. Tree-based methods 

Decision trees take the input dataset X and transform it into a 
response Y by breaking the input data into smaller subspaces, each one 
of them with a “purer” meaning in terms of information. In smaller re
gions, very simple local models can be fitted. The algorithm stops when 
further segmentation cannot improve the output above a specific 
threshold. The tree approach can then be seen as a set of IF-THEN 
statements where each conditional is applied inside the non- 
overlapping subspaces, which end up being a set of hyperrectangles. 

When the output of a tree is discrete, it is called a classification tree, 
and when it has a continuous output, a regression tree. Decision trees 
differ from neural networks in that the latter has a fixed structure 
defined a priori by the user, while the former progressively grows ac
cording to optimum results in each region. On the other hand, the tree’s 
computational complexity heavily increases with the dimensionality of 
the data. 

The first automated decision tree was developed by [21] with the 
automatic interaction detection (AID). It managed to predict a value by 
averaging the input data at each partition and partitions were found by 
minimizing least-square deviations. After Morgan’s success, many al
gorithms based on his were developed such as the MAID-M that allowed 
multiple variables, the THAID that could work for classification tasks, 
and the CHAID algorithm that added features to restrict overfitting, a 
direct consequence of the tree-based concepts [19]. Approaches still in 
use are the classification and regression tree (CART) algorithm [22] and 
the C4.5 [23]. CART combines classification and regression with a so
lution to overfitting, by programming a trade-off between model 
complexity and generalization of the model. C4.5 algorithm differs from 
CART in that it can provide multiple partitions per subspace, not only 
binary separation. 

Between modern approaches arising from tree-based decision, 
random forests were created by Breiman [24]. Random forests add split 
randomization, which enhances the robustness of the model by aver
aging the behavior of different random trees. This feature also relates to 
resistance to overfitting issues. In general, tree-based approaches pre
sent themselves as flexible tools and have the potential of handling 
highly complex decision-making problems like fault diagnosis. 

3.4. Artificial neural networks 

An artificial neural network (ANN) is a computational model 
inspired by the connection between neurons in the human brain. The 
concept of neural network lumps a wide group of structures. Some types 
are multilayer perceptrons, radial basis function neural networks, 
Kohonen (self-organizing) neural networks and deep learning neural 
networks [19]. 

A typical neural network consists of a series of layers formed by 
nodes (see example in Fig. 4). The input layer represents the data fed to 
the system—for fault detection, mainly raw sensor measurements. Each 
of the input elements is fed to all nodes of the next layer, part of the 
hidden layers. The hidden layers nodes perform some calculations over 
the input values and output them to the last layer, the output layer. This 
layer acts in a similar way as the previous ones but its output will be the 
final result of the model and the one visible for the user, usually binary 
values that determine the membership of the input data to a certain 
class, e.g. a fault. 

Any node in the hidden and output layers processes its input data in a 
linear part, z[l] =W[l]a[l− 1] + b[l] and a non-linear part or activation, 
a[l] = g[l] z[l] . W[l] and b[l] are the trainable parameters of the network 
and represent the weights and the bias, respectively, of a generic layer l 
(l ∈ [1, L]). The activations are calculated applying a non-linear function 
to the linear values z[l]. Many non-linear functions can be applied and 
some popular ones are the sigmoid g(z) = 1

1+ez, the hyperbolic tangent, 
g(z) = ez − e− z

ez+e− z or the rectified linear unit (ReLU) function, g(z) =max(0, z). 
The parameters (weights and biases) of an ANN are trained using 

known historical data to obtain a model able to predict the occurrence of 
faults upon new inputs. Unsupervised applications of ANN derive in the 
so-called self-organizing or Kohonen neural networks, which are able to 
train clustering models working with unlabelled data and using an ANN 
architecture. 

3.5. Other data-driven techniques 

Other approaches for fault diagnosis systems apply system identifi
cation and state-space representation to improve the effectiveness of 
data over different instants. One of the most used methods in this area is 
the canonicalvariate analysis (CVA). 

CVA is a subspace algorithm that, in particular, shares common 
features with PCA, FDA and PLS and this makes it an interesting 
candidate for fault diagnosis. CVA is a dimensionality reduction tech
nique based on multivariate statistical analysis but, in this case, it in
volves the selection of pairs input variable-output variable that 
maximizes a correlation measure [25]. Subspace algorithms assume that 
the augmented dynamic matrix (see Section 3.1) contains all the 

Fig. 3. Example of two-dimensional classification using SVM. Source: Alis
neaky, CC0 1.0. 

Fig. 4. Minimal ANN representation. Source: Cburnett, CC BY-SA 3.0.  
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dynamic information of the process, thus avoiding the need for a priori 
parameterization of models analogous to state-space representations. 

3.6. Model-based methods 

Model-based fault diagnosis relies on mathematical models to assess 
deviations in the behavior of the actual plant. These deviations are 
called residuals and can be obtained by several methods. Examples of 
them are state estimation and parity relations [26]; but also through a 
direct comparison between the simulated process and the actual plant. 
State-estimation uses the concept of observer to reconstruct the internal 
state of the system by measuring its outputs (sensor measurements) 
using the state space representation. 

On the other hand, parity relations are capable of generating equa
tions that only depend on the inputs and outputs of the system, thus 
managing to detect deviations in the residuals upon faulty behavior with 
less knowledge of the process. 

Mathematical models, when available, are excellent tools to predict 
the behavior of the system, and are useful for fault isolation since their 
results are easy to physically interpret unlike data-driven methods, 
which sometimes can be seen as “black boxes”. But to be built, they need 
a lot of prior knowledge that is not always affordable for complex sys
tems. However, simple model-based methods, even though not exact, 
can complement data-driven methods in those tasks they perform worse. 

4. Discussion 

4.1. The training of data-driven approaches 

The topics faced in this document arise a new question: how to train 
the reasoning units since there is no data of highly intensive tritium 
processing systems such as ITER? The following ideas suggest new ways 
of exploiting data to this aim.  

• Using the information available of failure in existing tritium systems 
such as TSTA, JET, TPL and TLK, as it appears in the compilations by 
Cadwallader [13] and Casey et al. [27]. However, the size of training 
sets in machine learning and pattern recognition is important, 
especially for complex and non-linear systems [28]. The available 
public literature regarding tritium systems does not provide for the 
massive amount of data that complex decision algorithms need.  

• Simulation of tritium system faults through plant first-principle 
modeling could complete this lack of knowledge. Examples of this 
are the efforts made by Cristescu et al. [5] and the ongoing de
velopments of Nougués et al. [6] in order to obtain new fault data.  

• Also, useful ways to provide for additional data is exploring the use 
of other existing and well-known systems out of the tritium context 
as a test bench to study the different dynamic monitoring approaches 
(see Section 4.2).  

• Transfer learning [29] can then be used as a tool to pre-train machine 
learning models for new uses based on previous trained and func
tional models. 

4.2. The use of a test bench 

Given the absence of large-scale tritium processes, actual historical 
data to train the fault diagnosis systems cannot be directly obtained. One 
of the possibilities to overcome this issue is to work on a system that does 
have historical data and/or allows to generate extra data through 
simulation, does already exist, and uses its learning process to pre-train 
the monitoring systems for tritium processes. A candidate that fits these 
expectations is the Tennessee-Eastman process. 

The Tennesse Eastman process is a model of a chemical plant pro
posed by Downs and Vogel [30] and meant as a tool for validation at the 
control engineering field and to standardize the diverse results obtained 
along with the scientific literature. 

This model is based on an actual plant owned by the Eastman 
Chemical Company and represents a complex, highly unstable system 
that is difficult to predict because of its internal recycle streams and the 
influence of the chemical reactions in the global pressure and temper
ature of the plant. This model allows access to a high variety of sensors, 
actuators, and the possibility to introduce disturbances and failures, 
making this model complete in terms of control and fault analysis and 
with a great background in the available literature, where efforts have 
been put into problems from classical control engineering [31] to fault 
diagnosis [32]. 

In addition to its interest for validation of the strategy itself, the 
Tennessee Eastman process can help set up a monitoring system such as 
that envisaged for tritium processes. The TE represents a relatively small 
system but complex enough to be of interest in the field of fault 
diagnosis. 

4.3. Fusion of several data-driven and model-based decision units 

As it can be seen from the review in Section 3, both model-based and 
data-driven approaches have complementary qualities. Mathematical 
models are normally more effective than data-driven models when 
enough information about the plant is available for its construction. 
However, in actual highly complex processes, accurate mathematical 
models are time-expensive. Data-driven techniques are powerful, rela
tively easy to implement, and more effective in detecting specific fail
ures for which they have been trained, but they are less reliable in 
diagnosing unknown types of failure. 

In the last years, a path of study has been initiated trying to combine 
both methods to solve the monitoring problem [12,33]. Some inter
esting approaches use fuzzy logic in order to combine different tech
niques such as that of Ruiz et al. [34], where simulation, artificial neural 
network and fuzzy logic based on IF-THEN rules are used. Fuzzy logic is 
reviewed by Chiang et al. [35] as a general tool to compose hybrid fault 
diagnosis approaches. 

On the other hand, the first steps have been taken on applying a 
hybrid monitoring fault system using Bayesian networks as a generic 
tool for the integration of various fault diagnosis techniques [36,37]. 
This approach has not been applied to the monitoring of tritium in nu
clear fusion and represents a promising path in future work. 

5. Conclusions 

The present document has stated the basis of the tritium monitoring 
problem in large tritium plants from the point of view of fault detection 
and isolation. The focus has been put on the need for a dynamic moni
toring strategy to give nuclear fusion power plants the possibility to be 
feasible and how this goal is hard given the constraints of tritium sensing 
technology and emissions regulation. A review of advanced fault diag
nosis techniques has been made in order to give a background for further 
challenges in the field. Such challenges are outlined in terms of training 
data management and collection, availability of models and hybrid ap
proaches that can extract the best features for a global fault diagnosis 
approach. Further related work consists in how to address the correcting 
actions to be able to return to the normal operation of the plant in the 
event of the detection of a fault, therefore, avoiding a shutdown and 
reducing the impact of the correction in the normal operation of the 
complete system.AcronymsACFautocorrelation functionAIDautomatic 
interaction detectionAMIaverage mutual informationANNartificial 
neural networkCARTclassification and regression treeCVAcanonical 
variate analysisFDAFisher discriminant analysisMBAmass balance 
areasPCAprincipal component analysisPLSpartial least squaresRB
Fradial basis functionSVMsupport vector machines  

Acronyms 
ACF autocorrelation function 
AID automatic interaction detection 
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AMI average mutual information 
ANN artificial neural network 
CART classification and regression tree 
CVA canonical variate analysis 
FDA Fisher discriminant analysis 
MBA mass balance areas 
PCA principal component analysis 
PLS partial least squares 
RBF radial basis function 
SVM support vector machines 
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[20] G. Rätsch, A Brief Introduction Into Machine Learning, 21st Chaos Communication 
Congress, 2004, pp. 1–6. http://www.mva.me/educational/hci/read/ML_reading. 
pdf. 

[21] J.N. Morgan, J.A. Sonquist, Problems in the analysis of survey data, and a proposal, 
J. Am. Stat. Assoc. 58 (1963) 415–434, https://doi.org/10.1080/ 
01621459.1963.10500855. 

[22] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification And Regression 
Trees, Routledge, 1984, https://doi.org/10.1201/9781315139470. 

[23] S.L. Salzberg, C4.5: Programs for machine learning by J. Ross Quinlan. Morgan 
Kaufmann Publishers, Inc., 1993, Mach. Learn. 16 (1994) 235–240, https://doi. 
org/10.1007/BF00993309. 

[24] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32, https://doi.org/ 
10.1201/9780367816377-11. 

[25] T. Katayama, S. Sugimoto, Statistical Methods in Control & Signal Processing, CRC 
Press, McLean, Virginia, 2018, https://doi.org/10.1201/9781315214832. 

[26] R.J. Patton, P.M. Frank, R.N. Clark, Issues of Fault Diagnosis for Dynamic Systems, 
Springer-Verlag, London, 2000. 

[27] M. Casey, K. Gruetzmacher, J. Bartlit, L. Cadwallader, The Data Collection System 
for Failure/Maintenance at the Tritium Systems Test Assembly, Technical Report, 
Los Alamos National Laboratory, New Mexico, 1988. https://digital.library.unt.ed 
u/ark:/67531/metadc1059876/. 

[28] A. Jain, B. Chandrasekaran, Dimensionality and sample size considerations in 
pattern recognition practice, in: Handbook of Statistics, vol. 2, 1982, pp. 835–855, 
https://doi.org/10.1016/S0169-7161(82)02042-2. 

[29] S. Bozinovski, Reminder of the first paper on transfer learning in neural networks, 
1976, Informatica 44 (2020), https://doi.org/10.31449/inf.v44i3.2828. 

[30] J. Downs, E. Vogel, A plant-wide industrial process control problem, Comput. 
Chem. Eng. 17 (1993) 245–255, https://doi.org/10.1016/0098-1354(93)80018-I. 

[31] T. McAvoy, N. Ye, Base control for the Tennessee Eastman problem, Comput. 
Chem. Eng. 18 (1994) 383–413, https://doi.org/10.1016/0098-1354(94)88019-0. 

[32] S. Yin, S.X. Ding, A. Haghani, H. Hao, P. Zhang, A comparison study of basic data- 
driven fault diagnosis and process monitoring methods on the benchmark 
Tennessee Eastman process, J. Process Control 22 (2012) 1567–1581, https://doi. 
org/10.1016/j.jprocont.2012.06.009. 

[33] Y. Zhao, F. Xiao, S. Wang, An intelligent chiller fault detection and diagnosis 
methodology using Bayesian belief network, Energy Build. 57 (2013) 278–288, 
https://doi.org/10.1016/j.enbuild.2012.11.007. 

[34] D. Ruiz, J.M. Nougués, L. Puigjaner, On-line process fault detection and diagnosis 
in plants with recycle, Comput. Chem. Eng. 23 (1999) S219–S222, https://doi.org/ 
10.1016/S0098-1354(99)80054-4. 

[35] L.H. Chiang, E.L. Russell, R.D. Braatz, Knowledge-based methods. Fault Detection 
and Diagnosis in Industrial Systems, Advanced Textbooks in Control and Signal 
Processing, Springer London, London, 2001, pp. 223–254, https://doi.org/ 
10.1007/978-1-4471-0347-9_12. 

[36] J. Siswantoro, A.S. Prabuwono, A. Abdullah, B. Idrus, A linear model based on 
Kalman filter for improving neural network classification performance, Expert Syst. 
Appl. 49 (2016) 112–122, https://doi.org/10.1016/j.eswa.2015.12.012. 

[37] K. Tidriri, T. Tiplica, N. Chatti, S. Verron, A generic framework for decision fusion 
in fault detection and diagnosis, Eng. Appl. Artif. Intell. 71 (2018) 73–86, https:// 
doi.org/10.1016/j.engappai.2018.02.014. 

E. Iraola et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.fusengdes.2015.07.021
https://doi.org/10.1016/j.fusengdes.2015.07.021
https://doi.org/10.1016/B978-0-08-056033-5.00116-6
https://doi.org/10.1016/B978-0-08-056033-5.00116-6
https://doi.org/10.1016/j.fusengdes.2005.06.367
https://doi.org/10.1016/j.fusengdes.2005.06.367
https://doi.org/10.1007/978-4-431-56460-7_7
https://doi.org/10.13182/FST05-A939
https://doi.org/10.13182/FST05-A939
https://doi.org/10.1080/15361055.2020.1741278
https://doi.org/10.1109/TIM.2016.2575318
https://doi.org/10.1007/978-3-319-33609-1_18
https://doi.org/10.1109/IJCNN.2018.8489130
https://doi.org/10.1109/IJCNN.2018.8489130
https://doi.org/10.1016/j.anucene.2013.01.005
https://doi.org/10.1287/inte.23.6.93
https://doi.org/10.1016/S1474-6670(17)58696-6
https://doi.org/10.1016/S1474-6670(17)58696-6
https://doi.org/10.13182/FST05-A816
https://doi.org/10.1007/978-4-431-56460-7_1
https://doi.org/10.1007/978-4-431-56460-7_1
http://refhub.elsevier.com/S0920-3796(21)00185-X/sbref0075
http://refhub.elsevier.com/S0920-3796(21)00185-X/sbref0075
https://inprocessgroup.com/en/solution/digital-twins-for-process-operations-enhancement
https://inprocessgroup.com/en/solution/digital-twins-for-process-operations-enhancement
https://doi.org/10.1007/978-1-4471-0347-9_4
https://doi.org/10.1007/978-1-4471-0347-9_4
https://doi.org/10.1007/978-1-4471-0347-9_6
https://doi.org/10.1007/978-1-4471-0347-9_6
https://doi.org/10.1007/978-1-4471-5185-2
https://doi.org/10.1007/978-1-4471-5185-2
http://www.mva.me/educational/hci/read/ML_reading.pdf
http://www.mva.me/educational/hci/read/ML_reading.pdf
https://doi.org/10.1080/01621459.1963.10500855
https://doi.org/10.1080/01621459.1963.10500855
https://doi.org/10.1201/9781315139470
https://doi.org/10.1007/BF00993309
https://doi.org/10.1007/BF00993309
https://doi.org/10.1201/9780367816377-11
https://doi.org/10.1201/9780367816377-11
https://doi.org/10.1201/9781315214832
http://refhub.elsevier.com/S0920-3796(21)00185-X/sbref0130
http://refhub.elsevier.com/S0920-3796(21)00185-X/sbref0130
https://digital.library.unt.edu/ark:/67531/metadc1059876/
https://digital.library.unt.edu/ark:/67531/metadc1059876/
https://doi.org/10.1016/S0169-7161(82)02042-2
https://doi.org/10.31449/inf.v44i3.2828
https://doi.org/10.1016/0098-1354(93)80018-I
https://doi.org/10.1016/0098-1354(94)88019-0
https://doi.org/10.1016/j.jprocont.2012.06.009
https://doi.org/10.1016/j.jprocont.2012.06.009
https://doi.org/10.1016/j.enbuild.2012.11.007
https://doi.org/10.1016/S0098-1354(99)80054-4
https://doi.org/10.1016/S0098-1354(99)80054-4
https://doi.org/10.1007/978-1-4471-0347-9_12
https://doi.org/10.1007/978-1-4471-0347-9_12
https://doi.org/10.1016/j.eswa.2015.12.012
https://doi.org/10.1016/j.engappai.2018.02.014
https://doi.org/10.1016/j.engappai.2018.02.014

	SMART_TC: an R&D Programme on uses of artificial intelligence techniques for tritium monitoring in complex ITER-like tritiu ...
	1 Introduction
	2 Problem statement
	3 Review of monitoring approaches
	3.1 Rigorous multivariate statistical approaches
	3.2 Kernel approaches
	3.3 Tree-based methods
	3.4 Artificial neural networks
	3.5 Other data-driven techniques
	3.6 Model-based methods

	4 Discussion
	4.1 The training of data-driven approaches
	4.2 The use of a test bench
	4.3 Fusion of several data-driven and model-based decision units

	5 Conclusions
	Author contribution
	Declaration of Competing Interest
	Acknowledgements
	References


