LNG lifecycle dynamic modeling: From process design verification to support operations

Leonardo Carpio

Houston, 20th March 2018
OTS Lifecycle dynamic modeling approach

- Motivation
- Targets and schedule
- Benefits
- Phases
 1. Process Design & Control Validation
 2. Integration and Control narrative verification
 3. Procedures Verification & Early Senior CRO’s Training
 4. ICSS Database Checkout
 5. Operator Training System
 6. OTS Support operations
- Conclusions

Source: https://www.spe.org/en/print-article?art=218
Motivation for Lifecycle Dynamic Modeling: Challenges

- Code is massive in modern ICSS, Can we test it in advance?
- Is the design suitable for all potential transients?
- How will the vendor packages (UCPs) interact with the ICSS?
- Are equipment protected?
- Will the Safety System perform well?
- How to fully test the Operating Procedures?
- Can we improve the plant’s availability?
- How to effectively train Operators?
- Can we reduce start-up delays?

Source: https://eng.hec.co.kr/
Each phase of the lifecycle approach addresses specific targets, which are aligned with the needs of the project. The model is developed once and refined in successive refined as more detailed information is available.

<table>
<thead>
<tr>
<th>PHASE 1</th>
<th>PHASE 2</th>
<th>PHASE 3</th>
<th>PHASE 4</th>
<th>PHASE 5</th>
<th>PHASE 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process design and unit control validation</td>
<td>Integration and control narrative verification</td>
<td>Procedure verification and process trainer</td>
<td>ICSS Integration and Checkout</td>
<td>Operator training system</td>
<td>OTS Support Operations</td>
</tr>
</tbody>
</table>

- **Controllability and operability improved**
- **Plant performance improved**
- **Safety increased**
- **Trips reduced**
- **Commissioning time reduced**
- **Flare minimized**
- **Start-Up date reduced**
- **Speeds-Up procedures (NSD, SU, etc.)**

Any early stage finding can be handled easily, to achieve:
- The best solution
- with minimum design modifications
- At minimum costs.

- **Detects** missing equipment or unreachable interlock conditions.
 Operators have more **availability**

- **Operators:** gain confidence and awareness of the plants behavior and interactions

- **Final product:**
 Is a valuable tool which can be used for training purposes and as a basis for control logic modifications, optimizations, control tuning, support operations in unforeseen conditions or configurations.
What added value does Aspen HYSYS provide to the Lifecycle dynamic modeling?

HYSYS LIFECYCLE PILLARS

- **Model Consistency**
 - Thermo Packages are consistent with the Steady-State Design models. Data is introduced once and the model is used along the phases of the lifecycle.

- **Growing Detail/Scope**
 - Detailed Equipment data is available and refined as the project evolves. Additional process units can be incorporated as needed in the application.

- **Rigor**
 - CRO’s will expect realistic process responses. This is the key to replicate/verify/improve operating procedures, pre-tune controllers and define alarms limits.

- **Extrapolation**
 - Extrapolate process conditions far from nominal. Model will help to determine the settings to maximize production, reduce flaring and improve its controls.

- **Reusability**
 - The dynamic model can be re-used with minor modifications for other purposes.

- **Maintainability**
 - Model update workflow is defined to keep the model alive and synchronized with the process, control and procedure changes.
HYSYS Lifecycle Dynamic Modeling

Engineering Study
- HYSYS Dynamic Model
 - Additional equipment, ICSS/UCP
 - Control Narrative, CEMs, interlocks

Model Adjust
- ICSS HMI Emulated with Inprocess Instructor Station
 - ICSS HMI displays
 - ICSS Database
 - Control Logic

Process Trainers
 - Model Connectivity
 - Instructor Station, Training Scenarios, Additional ICSS Consoles

Direct-Connect OTS
 - ICSS Checkout
 - ICSS HMI displays
 - ICSS Database
 - Control Logic

Inprocess Instructor Station
 - OTS
 - Operator Console 1:
 - ICSS Operator Station
 - ICSS Emulator
 - Ethernet Switch
 - Field Operated Devices (FOD) station
 - Aspen HYSYS Dynamic Runtime
 - Inprocess Instructor Station (ITS)
 - Field Operated Devices (FOD) panel
 - Malfunctions panel
Phase 1: Process Design & Control Validation, DSS model scope

Any early stage finding can be easily handled, to achieve the best solution with minimum modifications and at minimum costs

Blue boxes indicate the areas included in the scope of the Dynamic Simulation Study

Source: Handbook of Liquefied Natural Gas
Case 1: LNG BOG compressors

Purpose: Model the Excess BOG compressor system and associated equipment in order to validate the effectiveness of the compressor control system and operating procedures.

Focus: Detect possible system instabilities, ineffective surge protection, assess the antisurge valve sizing and validate the operating procedures (ESD, NSD, SU, holding -> loading)

Scenarios:

1. Emergency shutdown scenario (ESD)
2. Start-Up (SU)
3. Trip of one compressor during parallel operation
4. Blocked Outlet Scenario (BO)
5. Change operating mode
 - Holding (1 -> 2) to Loading to Holding (2 -> 1)
Benefits: Control system instabilities detected, control logic optimized, procedures validated, Safety increased and Commissioning time reduced

Results

- No HGBV or CGBV is Required
- Transient dynamics understanding
- Trip and alarm settings verified
- Procedures verified

Activation of the following functionalities are required to improve the stability or avoid reaching trip conditions:
- Loop decoupling
- Pressure override POC
- Load sharing Threshold
- IGV overload controller
- IGV discharge pressure override
Overview:
A company is expanding its existing LNG facility (i.e. ORF, 1 LNG train, Utilities, ICSS, etc.) to increase the production. Current facility faces difficulties to avoid domino trips during upsets in the steam network while operating in island mode.

Purpose:
Develop an integrated simulation of HP and LP Steam Network of the existing and new facilities, including main equipment like Boilers, HRSGs, Steam Turbine Helpers and Steam Turbine Generators.

Focus
Evaluate the stability, controllability and operability of the steam network in order to ensure safe operation and the protection of the equipment during upset scenarios.

Scenarios:
1. Trip of a Boiler
2. Trip of an LNG Train
3. Trip of a Steam Turbine Generator
Benefits: Process and control strategy optimized to improve the stability of the steam and power network. Flaring reduced, safety increased.
Phase 2: Integration and Control narrative

Blue boxes indicate the areas included in the scope of the Dynamic Simulation Study (DSS).

Training + Green boxes indicate the areas added to the HYSYS Dynamic model for training.

Source: *Handbook of Liquefied Natural Gas*
Phase 2: Control Narrative Verification

The HYSYS Dynamic model from the DSS was expanded with new units, the latest control logic implemented and the UCP sequences from the compressor packages.

The model was used to verify the Control Narrative Specifications:

- Control interactions with UCP
- Normal operation
- During non-design conditions
- During specific procedures
- Understanding the limits of the system
- Alarm & Trip limits
- Controller pre-setting
- Verify equipment protection
Phase 3A: Procedures Verification

Early verification of Operating Procedures with timing and transitions conditions

Scope:
- Individual Units
- Overall Start-up process

Combining Expertise’s:
Mix of experienced Engineers / Operators know-how with realistic response of Process Trainer

Operating Procedures are drafted and validated in a close interaction between experienced operators and simulation experts
Using the *Inprocess Instructor Station* software with the Aspen HYSYS as simulation engine, an HMI layer is added on top of the HYSYS model using the same displays of the ICSS control room.

Early CRO´s and Supervisor Training

Knowledge Transfer

- Control Interactions and Issues
- Limits of the system

Training Scope

- ICSS displays familiarization and operability verification
- Start-up / Shutdown Procedures
- Trip scenarios
- Disturbances and Malfunctions
Modern ICSS databases contain massive code lines to keep the system protected and in control. Nevertheless, this process requires exhaustive verification to ensure that the system has been properly implemented.

Validating the ICSS with a process emulation model stimulates the control system with realistic process signals and control interactions. Therefore, it becomes the virtual commissioning phase of the ICSS.

Performing the ICSS checkout with the dynamic model allows:

- A more robust and consistent check-out that reduces the commissioning time significantly.
- An Improvement of the operability and controllability.
- A Reduction of false trip occurrences.
Phase 4: ICSS Database Checkout

ICSS Vendor

- Pre-FAT ICSS Database v0
- Post-FAT ICSS Database v1
- Post-FAT ICSS Database v2

- Defects Report
- Defects Report
- Defects Report

OTS Vendor

- OTS Delivery
- OTS Delivery
- OTS Delivery

Customer

- OTS Delivery
- OTS Delivery
- OTS Delivery

ICSS FAT

- Defects Report
- Defects Report

ICSS SAT

- OTS FAT
- OTS SAT

Start-up

- DCS delivery
- Post-SAT ICSS Database v3

OTS

- OTS update
- OTS update
- **Backbone of OTS Solution**

- **Best Combination** - Choose the optimal hardware, software and services combination, tailored to your needs with a DCS-agnostic OTS.

- **Train Earlier** - Eliminate delays and bring your investment online faster leveraging the Aspen HYSYS dynamic lifecycle.

- **Longevity** - Continue to confidently prevent safety incidents after startup with dynamic simulation that is easily maintained and accurately predicts plant behavior.
OTS Deployment

Direct-Connect

Aspen HYSYS Dynamics

DCS Emulation

Instructor Station & Field Devices

Panel Operator

Fully Emulated

Aspen HYSYS Dynamics

Emulated Controls

Emulated Panel Operator

Instructor Station & Field Devices

Process Plant

Control System

Interface
Phase 6: OTS Support Operations

Following the lifecycle dynamic modeling approach provides increased added value to the project itself. As it is based on a highly reliable first principle model linked with the actual ICSS.

A direct connect OTS based on a first principle model allows:

• The evaluation of the operability of the plant under non design conditions (e.g. Start Up operations).
• The determination of potential limitations in process or utility areas.
• The evaluation of potential plant optimizations (i.e. Debottlenecking studies).
• The evaluation of alternative operating modes.
• Analysis of alternative control strategies.
In order to fully exploit the HYSYS Dynamic modeling lifecycle, the OTS should be developed by a supplier (Inprocess) who is independent from the ICSS supplier.

FIVE REASONS TO DECOUPLE OTS FROM THE REST OF ASSET AUTOMATION ACTIVITIES

1. **Fast tracking projects.** By building an early OTS based on dynamic models, you are freed up from waiting until every detail and revision of the plant DCS is complete.

2. **Safer operations.** By basing the OTS on dynamic process models, more rigorous and comprehensive safety scenarios can be considered, and impacts can be modeled and assessed.

3. **Operator training as an area of excellence.** By entrusting the development of OTS to dynamic modeling experts, you are involving teams passionate about the topic. You are selecting for excellence rather than just tacking on a must-have to a contractor focused elsewhere.

4. **Optimizing for cost & responsiveness.** By decoupling the OTS, the owner is encouraging competition, and more likely to get the most responsive and best price / performance solution.

5. **Agility.** A dynamic modeling team, not dependent on DCS design and delivery, can be extremely responsive to changes in operating objectives, staffing plans, regulations, etc.

Conclusions

Tasks

- Engineering Study
 - Discover engineering design issues (Equipment sizes, Protection Systems, 3rd party packages, ...)
- Process Trainers
 - Verify Control Narratives specifications and ICSS ↔ UCP interactions
- ICSS Checkout
 - Verify CEMs and trip logics specifications
 - Verify Start-up/Shutdown/ESD Procedures
- Direct-Connect OTS
 - Pre-tune Loops and alarm settings
 - Check out ICSS implemented code and UCPs
- Start-up support
 - Knowledge Transfer Program - Training of Operators with Process Trainer/OTS
 - Engineering support for troubleshooting

Benefits

- Reduce start-up date delays
- Shorten start-up
- Minimize incidents
- Reduce unplanned shutdowns
- Minimize flaring
- Improve plant reliability
- Improve safety
What added value does Inprocess provide to the Lifecycle dynamic modeling?

INPROCESS VALUE

- **ICSS Independent**
 - Acting as an independent auditor of the ICSS Database and able to interface all the ICSS emulators in the market

- **Global player**
 - Projects in Africa, Europe, North America, Latin America, Middle East and Asia, including off-shore stays to conduct training programs

- **Adaptable & Agile**
 - Schedule and scope changes are accommodated along the project to support the client in reaching their targets.

- **Talent & Experience**
 - 30 OTS, 100+ DSS, former Aspen Senior staff, core-business: Simulation. Ability to enhance the simulation capabilities by adding extensions.

- **CRO’s training programs**
 - Experience in developing customized education and competency training programs for Control Room Operators and Operation Staff.

Check out how to request and exploit a Lifecycle OTS!
• Increased Safety
• Minimize incidents (28% due to human error)
• Shortening start-up: around 10-20 days
• Reducing unplanned shutdowns by 2-3 per year
• Speeding-up planned shutdowns/start-ups by 2-3 days per year
• Increased production by 1-2%
• Flaring episodes minimized

15.3 million$ average estimated savings due to OTS

Source: http://hdl.handle.net/10642/1544

15 MNO = 2.6 Million$
200 MNO = 38.4 Million$
Leonardo Carpio
Project Manager
+34 933 308 205
Leonardo.carpio@inprocessgroup.com
inprocessgroup.com